NIST physicists chip away at mystery of antimatter imbalance

November 09, 2011

Why there is stuff in the universe--more properly, why there is an imbalance between matter and antimatter--is one of the long-standing mysteries of cosmology. A team of researchers working at the National Institute of Standards and Technology (NIST) has just concluded a 10-year-long study of the fate of neutrons in an attempt to resolve the question, the most sensitive such measurement ever made. The universe, they concede, has managed to keep its secret for the time being, but they've succeeded in significantly narrowing the number of possible answers.

Though the word itself evokes science fiction, antimatter is an ordinary--if highly uncommon--material that cosmologists believe once made up almost exactly half of the substance of the universe. When particles and their antiparticles come into contact, they instantly annihilate one another in a flash of light. Billions of years ago, most of the matter and all of the antimatter vanished in this fashion, leaving behind a tiny bit of matter awash in cosmic energy. What we see around us today, from stars to rocks to living things, is made up of that excess matter, which survived because a bit more of it existed.

"The question is, why was there an excess of one over the other in the first place?" says Pieter Mumm, a physicist at NIST's Physical Measurements Lab. "There are lots of theories attempting to explain the imbalance, but there's no experimental evidence to show that any of them can account for it. It's a huge mystery on the level of asking why the universe is here. Accepted physics can't explain it."

An answer might be found by examining radioactivity in neutrons, which decay in two different ways that can be distinguished by a specially configured detector. Though all observations thus far have invariably shown these two ways occur with equal frequency in nature, finding a slight imbalance between the two would imply that nature favors conditions that would create a bit more matter than antimatter, resulting in the universe we recognize.

Mumm and his collaborators from several institutions used a detector at the NIST Center for Neutron Research to explore this aspect of neutron decay with greater sensitivity than was ever possible before. For the moment, the larger answer has eluded them--several years of observation and data analysis once again turned up no imbalance between the two decay paths. But the improved sensitivity of their approach means that they can severely limit some of the numerous theories about the universe's matter-antimatter imbalance, and with future improvements to the detector, their approach may help constrain the possibilities far more dramatically.

"We have placed very tight constraints on what these theories can say," Mumm says. "We have given theory something to work with. And if we can modify our detector successfully, we can envision limiting large classes of theories. It will help ensure the physics community avoids traveling down blind alleys."
-end-
The research team also includes scientists from the University of Washington, the University of Michigan, the University of California at Berkeley, the University of Notre Dame, Hamilton College and the University of North Carolina at Chapel Hill. Funding was provided by the U.S. Department of Energy and the National Science Foundation.

* H.P. Mumm, T.E. Chupp, R.L. Cooper, K.P. Coulter, S.J. Freedman, B.K. Fujikawa, A. García, G.L. Jones, J.S. Nico, A.K. Thompson, C.A. Trull, J.F. Wilkerson and F.E. Wietfeldt. New limit on time-reversal violation in beta decay. Physical Review Letters, Vol. 107, Issue 10, DOI: 10.1103/PhysRevLett.107.102301.

National Institute of Standards and Technology (NIST)

Related Antimatter Articles from Brightsurf:

Timing the life of antimatter particles may lead to better cancer treatment
Experts in Japan have devised a simple way to glean more detailed information out of standard medical imaging scans.

New calculation refines comparison of matter with antimatter
An international collaboration of theoretical physicists has published a new calculation relevant to the search for an explanation of the predominance of matter over antimatter in our universe.

Scientists make step towards understanding the universe
Physicists from the University of Sheffield have taken a step towards understanding why the universe is made of mostly matter and not antimatter, by studying the difference between the two.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

APS tip sheet: Origins of matter and antimatter
Study suggests an 'axiogenesis' mechanism for the explanation of the matter to antimatter ratio in the Universe

The axion solves three mysteries of the universe
A hypothetical particle called the axion could solve one of physics' great mysteries: the excess of matter over antimatter, or why we're here at all.

NASA's Fermi Mission links nearby pulsar's gamma-ray 'halo' to antimatter puzzle
NASA's Fermi Gamma-ray Space Telescope has discovered a faint but sprawling glow of high-energy light around a nearby pulsar.

Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.

Read More: Antimatter News and Antimatter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.