Pitt researchers using mathematics to target Parkinson's disease symptoms

November 09, 2011

PITTSBURGH -- University of Pittsburgh mathematicians have been collaborating with Pitt's School of Medicine to find ways to stop the symptoms of Parkinson's disease, thanks in part to a four-year, $1.86 million grant from the National Science Foundation (NSF) and a five-year $1.2 million grant from the National Institutes of Health (NIH). The NSF grant began in 2007 and has funded a number of research projects within Pitt's Department of Mathematics; the NIH grant is in its first year.

Pitt mathematicians, working with neurobiology researchers, are using computational models, experiments, and analysis of models and data to study the way that signals are transferred between the basal ganglia, a collection of nuclei found in the brain that helps with motor control, and the thalamus, its downstream target in the brain. Although scientists can't yet prevent the cell death associated with Parkinson's, their study of mathematical patterns could guide the development of less invasive treatments that block the motor symptoms of the disease.

"For Parkinson's patients, there are more spurts and pauses in neural activity, and the firing of groups of neurons becomes more coordinated, leading to tremor and other symptoms," said Jonathan Rubin, Pitt professor of mathematics and one of the principal investigators on the project. "The neuronal activity is like a woodpecker knocking on a tree outside your window; it distracts you when it first starts pecking, and then the silence grabs your attention when the pecking suddenly stops. Similarly, the starts and stops in the neuronal activity can become disruptive to signal processing in the brain."

Rubin said this firing pattern may be what leads those with Parkinson's to experience shaking, rigid muscles, and difficulty in making quick movements. Currently, if side effects of drug treatments become too strong, surgeons fight these symptoms with deep brain stimulation (DBS), an aggressive but commonly used surgical treatment in which an implanted electrode literally penetrates the brain and sends out electrical impulses.

"It's not quite understood how deep brain stimulation works," said Rubin. "But it may be similar to the white noise of a window fan: It's right there in your window next to you, so it's potentially more distracting than a woodpecker. But actually, the regularity of the rhythm is less disruptive for you and your brain."

Pitt researchers are trying to understand the neuronal activity patterns so they can improve the deep brain stimulation procedure, making it more individualized and efficient.
-end-
Along with Rubin, the principal investigators of the NSF award for the study of complex biological systems across multiple space and time scales are G. Bard Ermentrout, Distinguished University Professor of Computational Biology and professor of mathematics at Pitt; David Swigon, Pitt associate professor of mathematics; and Ivan Yotov, professor and chair in Pitt's Department of Mathematics. The NSF grant partially funded the work of mathematics graduate student Pamela Reitsma, who carried out preliminary computational studies on the flow of signals from the basal ganglia under the supervision of Rubin and Brent Doiron, Pitt assistant professor of mathematics.

The principal investigators of the NIH grant are Pitt researchers Robert Turner, associate professor of neurobiology at Pitt; Brent Doiron, assistant professor of mathematics; and Rubin.

University of Pittsburgh

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.