Hunting neuron killers in Alzheimer's and TBI

November 09, 2012

Dying neurons lead to cognitive impairment and memory loss in patients with neurodegenerative disorders-conditions like Alzheimer's disease and traumatic brain injury. To better diagnose and treat these neurological conditions, scientists first need to better understand the underlying causes of neuronal death.

Enter Huaxi Xu, Ph.D., professor in Sanford-Burnham's Del E. Webb Neuroscience, Aging, and Stem Cell Research Center. He and his team have been studying the protein appoptosin and its role in neurodegenerative disorders for the past several years. Appoptosin levels in the brain skyrocket in conditions like Alzheimer's and stroke, and especially following traumatic brain injury.

Appoptosin is known for its role in helping the body make heme, the molecule that carries iron in our blood (think "hemoglobin," which makes blood red). But what does heme have to do with dying brain cells? As Xu and his group explain in a paper they published October 31 in the Journal of Neuroscience, excess heme leads to the overproduction of reactive oxygen species, which include cell-damaging free radicals and peroxides, and triggers apoptosis, the carefully regulated process of cellular suicide. This means that more appoptosin and more heme cause neurons to die.

Not only did Xu and his team unravel this whole appoptosin-heme-neurodegeneration mechanism, but when they inhibited appoptosin in laboratory cell cultures, they noticed that the cells didn't die. This finding suggests that appoptosin might make an interesting new therapeutic target for neurodegenerative disorders.

What's next? Xu and colleagues are now probing appoptosin's function in mouse models. They're also looking for new therapies that target the protein.

"Since the upregulation of appoptosin is important for cell death in diseases such as Alzheimer's, we're now searching for small molecules that modulate appoptosin expression or activity. We'll then determine whether these compounds may be potential drugs for Alzheimer's or other neurodegenerative diseases," Xu explains.

Putting a stop to runaway appoptosin won't be easy, though. That's because we still need the heme-building protein to operate at normal levels for our blood to carry iron. In a previous study, researchers found that a mutation in the gene that encodes appoptosin causes anemia. "Too much of anything is bad, but so is too little," Xu says.

New therapies that target neurodegenerative disorders and traumatic brain injury are sorely needed. According to the CDC, approximately 1.7 million people sustain a traumatic brain injury each year. It's an acute injury, but one that can also lead to long-term problems, causing epilepsy and increasing a person's risk for Alzheimer's and Parkinson's diseases. Not only has traumatic brain injury become a worrisome problem in youth and professional sports in recent years, the Department of Defense calls traumatic brain injury "one of the signature injuries of troops wounded in Afghanistan and Iraq."
-end-
This study was funded by the U.S. National Institutes of Health (National Institute on Aging grants R01AG038710, R01AG021173, R01AG030197, R03AG034366, R01AG031893, AG5131, AG18440, R21AG038968; National Institute of Neurological Disorders and Stroke grants R01NS046673, R01NS054880) and the Alzheimer's Association.

Original paper:

Zhang H, Zhang YW, Chen Y, Huang X, Zhou F, Wang W, Xian B, Zhang X, Masliah E, Chen Q, Han JD, Bu G, Reed JC, Liao FF, Chen YG, & Xu H (2012). Appoptosin is a Novel Pro-Apoptotic Protein and Mediates Cell Death in Neurodegeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32 (44), 15565-15576 PMID: 23115192

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. The Institute consistently ranks among the top five organizations worldwide for its scientific impact in the fields of biology and biochemistry (defined by citations per publication) and currently ranks third in the nation in NIH funding among all laboratory-based research institutes. Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a U.S.-based, non-profit public benefit corporation, with operations in San Diego (La Jolla), California and Orlando (Lake Nona), Florida. For more information, news, and events, please visit us at sanfordburnham.org.

Sanford-Burnham Prebys Medical Discovery Institute

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.