Nav: Home

Nerve cells warn brain of damage to the inner ear

November 09, 2015

Some nerve cells in the inner ear can signal tissue damage in a way similar to pain-sensing nerve cells in the body, according to new research from Johns Hopkins. If the finding, discovered in rats, is confirmed in humans, it may lead to new insights into hyperacusis, an increased sensitivity to loud noises that can lead to severe and long-lasting ear pain.

"We are still a long way from being able to treat hyperacusis," says Paul Fuchs, Ph.D., professor of otolaryngology-head and neck surgery, neuroscience and biomedical engineering at the Johns Hopkins University School of Medicine, "but our results suggest that cells called type II afferent neurons are similar to pain-sensing neurons in the rest of the body, so lessons about interventions elsewhere could apply to the ear, too."

A summary of the research will be published online in the journal Proceedings of the National Academy of Sciences during the week of Nov. 9.

The new discovery came as a result of interest in why this small subset of afferent nerve cells -- nerves that take information from the inner ear to the brain -- are quite insensitive to sound. "If they aren't very good at relaying sounds, what are they doing?" says Fuchs.

Fuchs and his team knew that these type II afferents connect to specialized sensory cells in the ear of mammals. These so-called outer hair cells amplify the sound waves that enter the inner ear, giving mammals very sensitive hearing over a wide range of frequencies. But, according to Fuchs, this specialization comes at a cost.

"Outer hair cells are the canaries in the coal mine for the inner ear, in that they're the first cells to die due to loud noise, age or other factors," says Fuchs. "Since they can't regenerate, their death leads to permanent hearing loss." So one possible role for type II afferents, he adds, would be to warn the brain of impending damage to outer hair cells.

It was known that nearby supporting cells respond to outer hair cell damage by increasing their inner calcium levels and releasing the chemical messenger ATP. Fuchs' team knew that type II afferent neurons can respond to ATP, so they damaged outer hair cells while monitoring type II neurons in surgically removed inner ear tissue. Indeed, outer hair cell rupture caused robust excitation of type II neurons.

Fuchs says that the ATP released by the supporting cells is probably what gets the neurons to fire, and the supporting cells might release ATP in response to ATP that leaks out of the ruptured outer hair cells. But he noted that "outer hair cells don't have to rupture to release ATP. Progressive damage caused by loud noises or other stress is enough to increase ATP levels in the fluid of the inner ear."

Over evolutionary time, such a mechanism could have evolved to help mammals avoid further damage to their hearing. Such effects might depend on heightened sensitivity of the type II neurons after trauma, akin to the heightened sensitivity of pain-sensing nerves in damaged skin. Hypersensitivity to loud sound (hyperacusis) is a paradoxical consequence of hearing loss in many people. Everyday noises such as slamming doors, clanking dishes and barking dogs can become irritating and even painful.

The good news, Fuchs says, is that the analogies with pain elsewhere in the body provide guidance for future studies. For example, a compound that suppresses pain-sensing nerve cells elsewhere, also prevented type II afferent neurons from firing in response to outer hair cell death. At present, Fuchs cautions, this is a restricted experimental result. But, it provides a "proof of concept" for treating pain associated with inner ear damage. And the Fuchs laboratory plans to explore this question in their ongoing research.
-end-
Other authors of the report include Chang Liu and Elisabeth Glowatzki of the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Institute on Deafness and Other Communication Disorders (R01 DC011741, P30 DC005211).

Johns Hopkins Medicine

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.