A giant fullerene system inhibits the infection by an artificial Ebola virus

November 09, 2015

Different studies have demonstrated that the ebola virus infection process starts when the virus reaches the cellular DC-SIGN receptor to infect the dendritic cells (of the immune system). European researchers have designed a "giant" molecule formed by thirteen fullerenes covered by carbohydrates which, by blocking this receptor, are able to inhibit the cell infection by an artificial ebola virus model.

In this study, published in Nature Chemistry, researchers from the Universidad Complutense de Madrid/IMDEA-Nanociencia, the Instituto de Investigación Sanitaria Hospital 12 de Octubre (Madrid), and the Instituto de Investigaciones Químicas del CSIC-Universidad de Sevilla have collaborated, together with three european research groups (CNRS/Université de Strasbourg, France and Université de Namur, Belgium).

"Fullerenes are hollow cages exclusively formed by carbon atoms", explains Nazario Martín, Professor of Organic Chemistry in the UCM and main author of the study. In this work, scientists have employed C60 fullerene, which is formed by 60 carbon atoms and has the shape of a truncated icosahedron, which resembles a football ball.

These molecules decorated with specific carbohydrates (sugars) present affinity by the receptor used as an entry point to infect the cell and act blocking it, thus inhibiting the infection.

Researchers employed an artificial ebola virus by expressing one of its proteins, envelope protein GP1, responsible of its entry in the cells. In a model in vitro, this protein is covering a false virus, which is able of cell infection but not of replication.

"We have employed a cell model previously described in our lab which consists in a cell line of human lymphocytes expressing DC-SIGN receptor, which facilitates the entry of the virus in Dendritic Cells", points out Rafael Delgado, researcher of the Hospital 12 de Octubre, and other of the authors of the study.

By blocking this receptor and inhibiting the virus infection, the authors think that the dissemination of the virus would decrease and the immune response increase, but this idea has still to be developed with in vivo studies.

The biggest fullerene system in the lab

The system designed by the chemists, based on carbon nanostructures developed in the UCM, mimic the presentation of carbohydrates surrounding virus like ebola or VIH.

The team has achieved an unprecedented success in fullerene chemistry and dendritic growth: connecting in one synthetic step twelve fullerene units, each with ten sugars, to other central fullerene, creating a globular superstructure with 120 sugar moieties on its surface, "this is the fastest dendrimeric growth developed in a laboratory up to now" says Beatriz Illescas, Professor in the UCM and coauthor of the work.

According to scientists, the results highlight the potential of these giant molecules as antiviral agents. "This work open the door to the design and preparation of new systems to inhibit the pathogens infection in cases where the current therapies are not effective or are inexistent, as occurs with the ebola virus", clarifies Martín.

After these experiments on the cellular level, researchers will study the behavior of these systems in animal models, starting with mice. "We will study, on the one hand, the pharmacokinetics and, on the other, the antiviral activity in vivo" explains Javier Rojo, researcher of the Instituto de Investigaciones Químicas del CSIC and other of the authors of the study. Once the most effective compound has been identified, studies using the true ebola virus could be carried out.
-end-
* Reference: Nazario Martín et al. "Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection", Nature Chemistry, 9th November 2015. DOI: 10.1038/nchem.2387.

Universidad Complutense de Madrid

Related Ebola Articles from Brightsurf:

Targeting the shell of the Ebola virus
As the world grapples with COVID-19, the Ebola virus is again raging.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

Ebola transmission risks would be taken more seriously with ground-up interventions
A study led by the University of Kent's Durrell Institute of Conservation and Ecology (DICE) has found significant differences in disease risk perception and channels of information about Ebola virus disease (EVD) in rural areas and urban centres of Guinea, West Africa.

US inroads to better Ebola vaccine
As the world focuses on finding a COVID-19 vaccine, research continues on other potentially catastrophic pandemic diseases, including Ebola and Marburg viruses.

Ebola antibodies at work
Scientists in Israel and Germany show, on the molecular level, how an experimental vaccine offers long-term protection against the disease.

Half of Ebola outbreaks undetected
An estimated half of Ebola virus disease outbreaks have gone undetected since it was discovered in 1976, according to research published in PLOS Neglected Tropical Diseases.

Protecting those on the frontline from Ebola
Online training developed at the Medical University of South Carolina (MUSC) increased the knowledge of health care workers about effective prevention of Ebola up to 19 percent and reduced critical errors to 2.3 percent in a small MUSC cohort.

Another piece of Ebola virus puzzle identified
A team of researchers have discovered the interaction between an Ebola virus protein and a protein in human cells that may be an important key to unlocking the pathway of replication of the killer disease in human hosts.

How the human immune system protects against Ebola
'The current approach for treatment of filovirus infections with antibody cocktails tested in animal models utilizes the principle of targeting of non-overlapping epitopes.

How to slow down Ebola
The phylogenetic tree of the 2013-2016 Ebola epidemic doesn't just tell us how the Ebola virus was able to evolve: it also reveals which events and preventive measures accelerated or slowed down its spread.

Read More: Ebola News and Ebola Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.