Nav: Home

Irx genes make cartilage cells act 'oh so immature'

November 09, 2015

Arthritis, the leading cause of disability in the U.S., involves the loss of a special type of cartilage cell lining the joints. In a study appearing on the cover of the latest issue of Developmental Cell, first author Amjad Askary -- a PhD student in the USC Stem Cell lab of Gage Crump -- and his colleagues identify roles for a family of genes, called Iroquois (Irx) genes, in protecting these joint cartilage cells.

While some types of cartilage serve as temporary scaffolds that are later replaced by bone, joint cartilage remains perpetually cushiony, flexible and immature. In order to better understand how this works, the researchers took advantage of the fact that a joint in the zebrafish jaw, called the hyoid joint, contains high levels of one member of the Irx family, Irx7. When the researchers used gene editing to create mutant zebrafish lacking this gene, the wrong type of cartilage formed at this joint. They then showed that Irx genes promote joint flexibility by turning off genes that stiffen more mature cartilage.

Next, the researchers explored whether Irx genes play a role in species outside the fish tank. To do so, Crump's team collaborated with the neighboring labs of Justin Ichida, Francesca Mariani and Andy McMahon -- all located in the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC -- to show that a related Irx gene could repress the maturation of cartilage in mice.

"The Irx genes may be a core machinery that prevents cartilage maturation in species across the animal kingdom," said the study's corresponding author Gage Crump, associate professor of stem cell biology and regenerative medicine at USC. "This raises intriguing questions: can we harness the effects of these genes to encourage stem cells to differentiate into new joint cartilage, and do mutations in these genes play a role in inherited osteoarthritis?"
-end-
Additional co-authors on the study include Lindsey Mork, Sandeep Paul, Xinjun He, Audrey Izuhara and Suhasni Gopalakrishnan from USC; and Sonja Dabizljevic and Rodney Dale from Loyola University Chicago.

Funding came from the National Institutes of Health (R01 DE018405 and T32), March of Dimes, an A.P. Giannini Foundation fellowship and the Loyola University Chicago's Provost office.

University of Southern California - Health Sciences

Related Regenerative Medicine Articles:

New research into stem cell mutations could improve regenerative medicine
Research from the University of Sheffield has given new insight into the cause of mutations in pluripotent stem cells and potential ways of stopping these mutations from occurring.
Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.
New prize-winning research highlights potential of immune intervention in improving regenerative medicine
Joana Neves is the 2019 grand prize winner of the Sartorius & Science Prize for Regenerating Medicine & Cell Therapy, for work in mice that offers a promising approach to improve the outcome of regenerative stem cell-based therapies aimed at delaying age-related degenerative diseases.
NUS Medicine researchers can reprogramme cells to original state for regenerative medicine
Scientists from NUS Medicine have found a way to induce totipotency in embryonic cells that have already matured into pluripotency.
A new material for regenerative medicine capable to control cell immune response
Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.
Optoceutics: A new technique using light for regenerative medicine
Researchers in Italy at IIT-Istituto Italiano di Tecnologia used visible light together with photo-sensitive and biocompatible materials to facilitate the formation of new blood vessels in vitro.
Major stem cell discovery to boost research into development and regenerative medicine
A new approach has enabled researchers to create Expanded Potential Stem Cells (EPSCs) of both pig and human cells.
Spinning-prism microscope helps gather stem cells for regenerative medicine
Pluripotent stem cells are crucial to regenerative medicine, but better screening methods are needed to isolate safe and effective cells for medical use.
'Cellular dust' provides new hope for regenerative medicine
While stem cells have the most therapeutic potential, the benefits of regenerative medicine may best be mobilised using extracellular vesicles (EVs), also known in the past as 'cellular dust'.
New stem cell found in lung, may offer target for regenerative medicine
Newly identified stem cells in the lung that multiply rapidly after a pulmonary injury may offer an opportunity for innovative future treatments that harness the body's ability to regenerate.
More Regenerative Medicine News and Regenerative Medicine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.