Molecular clocks control mutation rate in human cells

November 09, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do so in bursts and these will often be through external exposures such as sunbathing or tobacco smoking. Other mutational processes, however, may be internal to the cell and generate mutations continuously, at a constant rate over decades. If so the mutations they generate will be "clock-like", with the number of mutations present correlating with the age of the person. In research reported in Nature Genetics two clock-like mutational processes have been found in human cells and the rates at which the two clocks tick in different human cell types have been determined.

These clock-like mutational processes could ultimately be responsible for a large proportion of human cancer and contribute to human ageing.

The genomes of cancer cells held the key to finding these molecular clocks. Previous work on cancer had revealed that mutations often leave a molecular fingerprint, called a mutational signature, on the genome of a cancer cell. To identify the mutational signatures of clock-like mutational processes in the human body, this study looked at the DNA sequences of 10,250 cancer genomes, from 36 different types of cancer.

The researchers found 33 mutational signatures in the cancer genomes, but only two had clock-like features. These two clock-like processes, termed Signature 1 and Signature 5, showed a correlation between the number of mutations found in each cancer sample and the age of the patient when the cancer was diagnosed.

"This is a hugely exciting finding as it solves a longstanding question. Not only has this study proved that mutational molecular clocks exist, it has also shown that there are two separate clock processes that are constantly degrading DNA," said Dr Ludmil Alexandrov, corresponding author and Oppenheimer Fellow at Los Alamos National Laboratory in the USA. "How fast these clocks tick in a cell may well determine both the ageing of this cell and the likelihood for it to become cancerous."

The molecular clocks generate mutations at a steady rate, the 'ticking' rate of the clock, and accumulate more mutations with age. By investigating 7,329,860 somatic mutations from the cancer genomes, the researchers were able to effectively look back in time, calculating which mutations each cell had had before it became a cancer cell. This showed them how fast the mutational clocks had generated the mutations. This information could help researchers understand the biology of cancer development and even look at the rate that primary cancer cells spread to other parts of the body (metastasis).

"This study is important and could have practical implications for cancer patients. In the future it could lead to clinicians being able to compare the genomes of a primary tumour and any metastases, and determine the length of time it had taken to spread," said Dr Julian Sale, an author on the paper and group leader at the MRC Laboratory of Molecular Biology. "Because the clock continues to tick in the cancer, it may also be possible to help doctors predict for new patients how quickly a cancer may change, for example to become metastatic to other parts of the body or to acquire resistance to a drug. This could help doctors plan the best course of treatment for a patient."

Both Signature 1 and Signature 5 clock-like processes accumulated mutations at a constant rate over time and operate in essentially all cell types in the human body. However they exhibited substantially different mutation rates in the different tumour types and surprisingly they also had different rates to each other, even in the same type of tumour. The fact that they behave differently indicates that they are likely to be due to two different biological processes.

The mutation rate of Signature 1 was highest in cells with high turnover rates, such as stomach and colorectal cells, and appeared to be due to certain methylated cytosine bases transforming into thymine, leading to mismatches in the genome which are converted into mutations when a cell divides. The mutational process for Signature 5 is mysterious. However, unlike Signature 1, the Signature 5 mutation rate did not correlate with the number of cell divisions. More research is needed on both these processes to understand their full roles in the cell.

"This is the first identification and quantification of mutational molecular clocks, and was carried out by looking through the "cracked lens" of cancer genomes. Over the next few years, we hope to perform large-scale sequencing directly of all types of normal cells to refine these clock-like mutation rates" said Professor Sir Michael Stratton, corresponding author and Director of the Wellcome Trust Sanger Institute. "In addition, further research is particularly needed to understand the nature of the mutational processes generating these clock-like mutations."
-end-
Notes to Editors

Publication details


Alexandrov LB et al., (2015) Clock-like mutational processes in human somatic cells. Nature Genetics. DOI 10.1038/ng.3441

Participating Centres

Wellcome Trust Sanger Institute, Hinxton CB10 1SA,Cambridgeshire, United Kingdom; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States of America; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States of America; MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge CB2 0XZ, Cambridge, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom, Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom; Department of Medical Genetics, Addenbrooke's Hospital National Health Service (NHS) Trust, Cambridge CB2 0QQ, United Kingdom

Selected Websites

Los Alamos National Laboratory


Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns. http://www.lanl.gov

MRC Laboratory of Molecular Biology

The Medical Research Council (MRC) Laboratory of Molecular Biology (LMB) is one of the world's leading research institutes. Discoveries and inventions developed at the LMB, for example DNA sequencing and methods to determine the structure of proteins, have revolutionised all areas of biology. Its scientists work to advance understanding of biological processes at the molecular level. This information will help us to understand the workings of complex systems, such as the immune system and the brain, and solve key problems in human health. http://www2.mrc-lmb.cam.ac.uk/

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Wellcome Trust Sanger Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.