Nav: Home

Focus on quiescent cells brings to light essential role of RNAi in transcription control

November 09, 2016

Cold Spring Harbor, NY - Some cells just don't get the respect they deserve. In fact, most cells don't. Over 99 percent of the innumerable cells on our planet exist in a state of quiescence. Pick up a handful of soil: it contains thousands of microorganisms, almost every one of which would not grow if you placed it in a culture dish. These cells are metabolically active - yes, alive - but they are not dividing. And they will remain in a reproductively "quiet" state unless stimulated under specific conditions to re-enter the cell cycle and gear up to divide once again.

Some of our most important cells, in fact, are quiescent, including stem cells, cells of the adaptive immune system, and oocytes - eggs that women can carry for decades before being activated through fertilization.

Dividing cells, although always a tiny minority in nature's big picture, command most of our attention, and for reasons that are not hard to figure. Cells that gear up to divide are those that carry all life on the planet forward, into the next generation. And when replication runs amock, as in human cancer, that basic life-sustaining function is transmuted into a weapon threatening survival itself.

Today in the journal Science, a team of biologists led by Robert A. Martienssen, Cold Spring Harbor Laboratory (CSHL) Professor and HHMI-GBMI Investigator, presents evidence supporting a theory that places in profound perspective a battle within all cells between mechanisms that prompt them to replicate their DNA and those that enable them to transcribe their DNA into RNA. "It's an inherent choice that has to be managed, and accounts for much of what our cellular machinery is doing at any given time," Martienssen says.

The evidence Martienssen's team reports today is the result of turning the spotlight, for a change, on that multitudinous silent cellular majority - cells in the quiescent state. Postdoctoral investigator Benjamin Roche performed experiments demonstrating for the first time that most cells cannot survive in a quiescent state unless an epigenetic mechanism called RNA interference (RNAi) is up and running. RNAi and other epigenetic processes induce changes in where and when specific genes are expressed without altering their genetic code.

Using simple fission yeast (S. pombe) cells as a model, the team discovered that mutants lacking RNAi were unable to enter, maintain or exit quiescence. Yeast without RNAi could survive only if they were in the process of dividing.

This suggested there was something about quiescence itself that required RNAi to be present if a eukaryotic cell was to stay alive. It made sense to ask what was happening in quiescent cells in which RNAi was functioning. These dovetailed questions led to the following explanations, in research in Martienssen's lab led by Dr. Roche over a five-year period in collaboration with Dr. Benoît Arcangioli at the Institut Pasteur, Paris.

When a cell exits the cell cycle, leaving the reproductive state, it needs to be reprogrammed in order to enter quiescence. This reprogramming is accomplished in part by RNAi, which acts to silence genes by causing a ubiquitous enzyme called RNA polymerase to physically detach from the double helix, where at some earlier point it had attached in order to translate the DNA of the genome into RNA messages that encode proteins.

RNA polymerase comes in several forms. In cycling cells the release of RNA polymerase II also has the effect of stimulating the cell to produce highly compressed areas called heterochromatin, typically near the centromere in the central part of chromosomes. RNAi is part of a more complex epigenetic machinery in higher organisms that silences the heterochromatin once it is established. In cells in which RNAi is missing or disabled, heterochromatin, normally silent, is activated.

This was pointed out by Martienssen and colleagues in 2002, in epigenetics research cited by Science as "Breakthrough of the Year." The new research shows that cells missing RNAi cannot enter or maintain quiescence precisely because heterochromatic regions spin out of control and end up killing the cell. The team now places this observation a context that significantly broadens its implications.

"We found through genetic analysis that RNAi not only interacts with RNA polymerase II in the formation and regulation of heterochromatin," says Martienssen. "We also found that in quiescent cells, it is the RNAi-induced release of RNA polymerase I, another enzyme active during transcription, that enables quiescent cells to maintain their quiescent state."

It is the release of RNA polymerase I specifically from regions of the genetic material occupied by rDNA that is key here. rDNA is the genetic material that encodes the RNA that helps make up ribosomes, protein factories found in all cells. rDNA, much like the DNA that encodes heterochromatin, is highly repetitive and occurs in many copies across the genome. The action of RNAi releases RNA polymerase I from rDNA regions, and in so doing prevents the over-accumulation of heterochromatin during the maintenance of quiescence.

"This research may explain the key role that RNAi plays in stem cells, which are quiescent for much of their life; and also in cancer, which, after all, is the stimulation of cells that are normally quiescent to begin dividing and proliferating. That transition, interestingly, is often accompanied by mutations in RNAi," Martienssen says.
-end-
Research in Martienssen's laboratory was supported by the National Institutes of Health and the Howard Hughes Medical Institute-Gordon and Betty Moore Foundation Investigator program.

"RNA interference is essential for cellular quiescence" appears online in Science November 10, 2016. The authors are: B. Roche, B. Arcangioli, and R. A. Martienssen. The paper can be accessed at: http://science.sciencemag.org/

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program hosts more than 12,000 scientists from around the world each year on its campuses in Long Island and in Suzhou, China. The Laboratory's education arm also includes an academic publishing house, a graduate school and programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Cold Spring Harbor Laboratory

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.