Nav: Home

Primates regain control of paralyzed limb

November 09, 2016

On June 23rd, 2015, a primate with spinal cord injury regained control of its paralyzed leg with the help of a neuroprosthetic system called the "brain-spine interface" that bypassed the lesion, restoring communication between the brain and the region of the spinal cord. The results are published today in Nature.

The interface decodes brain activity associated with walking movements and relays this information to the spinal cord - below the injury - through electrodes that stimulate the neural pathways that activate leg muscles during natural locomotion.

The neuroprosthetic interface was conceived at EPFL in Lausanne, Switzerland, and developed together with an international network of collaborators including Medtronic, Brown University and Fraunhofer ICT-IMM. It was tested in collaboration with the University of Bordeaux, Motac Neuroscience and the Lausanne University Hospital (CHUV).

"This is the first time that neurotechnology restores locomotion in primates," says EPFL neuroscientist Grégoire Courtine who led the collaboration. "But there are many challenges ahead and it may take several years before all the components of this intervention can be tested in people."

Decoding brain signals and activating leg muscles

The brain is a huge network of cells called neurons. Information is processed in the brain by transmitting spikes of electricity from one neuron to the next. This electrical spiking gives rise to brain signals that can actually be measured and interpreted.

The lumbar region of the spinal cord also contains complex networks of neurons that activate leg muscles to walk. Bundles of nerves coming from the brain carry the relevant information to the spinal cord about the intended activation of leg muscles.

For intact nervous systems, signals about walking come from a small region (about the size of a dime for primates) of the brain called the motor cortex. Signals from the motor cortex travel down the spinal cord, reach the neural networks located in the lumbar region, and these in turn activate muscles in the legs to produce walking movements.

Spinal cord lesions partly or completely prevent these signals from reaching the neurons that activate leg muscles, leading to paralysis. But the motor cortex can still produce spiking activity about walking, and the neural networks activating muscles in the paralyzed leg are still intact and can still generate leg movements.

How the brain-spine interface works

The brain-spine interface bridges the spinal cord injury, in real-time and wirelessly. The neuroprosthetic system decodes spiking activity from the brain's motor cortex and then relays this information to a system of electrodes located over the surface of the lumbar spinal cord, below the injury. Electrical stimulation of a few volts, delivered at precise locations in the spinal cord, modulates distinct networks of neurons that can activate specific muscles in the legs.

"To implement the brain-spine interface, we developed an implantable, wireless system that operates in real-time and enabled a primate to behave freely, without the constraint of tethered electronics," says Courtine. "We understood how to extract brain signals that encode flexion and extension movements of the leg with a mathematical algorithm. We then linked the decoded signals to the stimulation of specific hotspots in the spinal cord that induced the walking movement."

For partial lesions of the spinal cord, the scientists showed that the primate regained control of its paralyzed leg immediately upon activation of the brain-spine interface. The interface should also work for more severe lesions of the spinal cord, according to the scientists, likely with the aid of pharmacological agents. Note that for these partial lesions, the primate is initially paralyzed and then spontaneously regains full mobility after about three months.

"The primate was able to walk immediately once the brain-spine interface was activated. No physiotherapy or training was necessary," says neuroscientist Erwan Bezard of Bordeaux University who oversaw the primate experiments.

Clinical Trials

"The link between the decoding of the brain and the stimulation of the spinal cord - to make this communication exist - is completely new," says neurosurgeon Jocelyne Bloch of the Lausanne University Hospital (CHUV) who leads the functional neurosurgery department at the Lausanne University Hospital and surgically implanted the brain and spinal cord implants.

She continues, "For the first time, I can imagine a completely paralyzed patient able to move their legs through this brain-spine interface."

In collaboration with EPFL, Bloch is currently leading a clinical feasibility study that evaluates the therapeutic potential of this spinal cord stimulation technology, without the brain implant, to improve walking in people with partial spinal cord injury affecting the lower limbs.
-end-


Ecole Polytechnique Fédérale de Lausanne

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...