New In-Situ Combustion advancements researched by Kazan University

November 09, 2016

Kazan University has demonstrated really impressive results in its hydrocarbon research recently. We talked about one of such breakthroughs in our article not long ago. Interestingly, a paper on this new research was also published in Energy and Fuels.

Senior Research Associate of the In-Situ Combustion Lab Andrey Galukhin explains, "In-situ combustion is one of the most promising hydrocarbon recovery methods of today and, probably, tomorrow. It can help not only extract oil from deeper horizons but also improve the quality of recovered material. That's a new level. However, there are some issues to be resolved. For example, we at our lab now work on the stability of the combustion front -- this parameter is the key to all the unique opportunities provided by this technology. We have learned to stabilize the front with catalysts".

The catalysts can not only stabilize the front but also accelerate its movement along a reservoir. The current result is 10-fold increase. However, this is not what makes the research unique. KFU employees are the first in the world to try revealing the catalysts' work mechanisms.

"It's basically impossible to observe a catalyst inside a reservoir. The total mass of catalysts used in a reaction is too miniscule. Maybe that's the reason for us being the pioneers in this area. We have had to unite different methods to achieve something. We collaborate with the Institute of Physics, something unheard of previously. Such an opportunity only appeared because of SAU EcoOil", adds Dr. Galukhin.

It's early to speak about a revolution in oil recovery, however. The idea is to create a model that can later be tested with specific catalysts. But some companies have already shown interest. A few days ago Baker Hughes and KFU held negotiations considering in-situ combustion catalysts.

Kazan Federal University

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to