Nav: Home

New study points to a possible cause of many preterm births

November 09, 2016

The discovery that small calcium deposits in fetal membranes may lead to a mother's water breaking prematurely suggests that dietary or other interventions could prevent those preterm births.

Most spontaneous preterm births do not have causes that are easy to identify. Physicians frequently have not known why uterine contractions begin weeks earlier than they should, in one major form of preterm birth; or why a mother's water breaks well before the fetus is fully developed, in another major form.

One in 10 babies is born preterm - before 37 weeks of pregnancy - and may face long-term health problems as a result. Learning why these births occur is critical to preventing them. And a new study from Nationwide Children's Hospital may have solved part of this mystery.

Researchers found that in preterm, premature rupture of the fetal membranes - that is, water breaking significantly early- the amniotic sac contains calcium deposits and early markers of bone formation. The membranes, then, are less elastic and more prone to breaking.

"We do see calcium deposits in full term births as well, which is probably part of the normal breakdown of the membranes at the appropriate time," says Irina Buhimschi, MD, senior author of the study and director of the Center for Perinatal Research at The Research Institute at Nationwide Children's. "The membranes are supposed to rupture when labor is underway. However, these calcium deposits are too many and too early."

The study, published today in Science Translational Medicine, also demonstrates how the deposits occur. Many human body fluids, including saliva and blood, can produce calciprotein particles. When those particles deposit in soft tissues outside of the skeleton, they can lead to harmful calcification. Calciprotein particles have been implicated in kidney stones, atherosclerosis and aneurism rupture. A protein called fetuin-A helps prevent those particles from depositing where they shouldn't.

This study shows for the first time that amniotic fluid can also produce calciprotein particles. In cases of preterm premature rupture of membranes, the amniotic fluid has decreased concentrations of fetuin-A, resulting in a decreased ability to stop the particles from depositing in the amniotic sac.

When researchers exposed fetal membrane cells to calciprotein particles, the particles led the fetal membrane tissue to begin creating osteoblasts, the precursors of bone.

These findings suggest that it may be possible to identify pregnancies at greater risk for premature preterm rupture of membranes, says Dr. Buhimschi, who is also a professor of Pediatrics and Obstetrics/Gynecology at The Ohio State University College of Medicine. They also suggest possible interventions to prevent these kinds of preterm births.

"We need to see if there are women who lack the capacity to prevent these early calcifications," says Dr. Buhimschi, who began her work linking prematurity and calcification at the Yale University School of Medicine. "I also believe strongly that there are dietary measures that would improve the intra-amniotic environment for these women. We know that dietary interventions are critical in atherosclerosis and other disease processes that involve calciprotein particles. We just have never considered it in preterm premature rupture of membranes before."
-end-
Reference:

Shook L, Buhimschi C, Dulay A, McCarthy M, Hardy J, Buniak C, Zhao G, Buhimschi I. Calciprotein Particles as Potential Etiologic Agents of Idiopathic Preterm Birth. Science Translational Medicine. 2016 Nov 9 [Epub ahead of print]

Nationwide Children's Hospital

Related Amniotic Fluid Articles:

The biology of uterine fluid: How it informs the fetus of mom's world
A developing fetus bathes in a mixture of cellular secretions and proteins unique to its mother's uterus.
Too much stress for the mother affects the baby through amniotic fluid
If the mother is stressed over a longer period of time during pregnancy, the concentration of stress hormones in amniotic fluid rises, as proven by an interdisciplinary team of researchers from the University of Zurich.
Fluid flow in the brain unravelled for the first time
The puzzle of how the brain regulates blood flow to prevent it from being flooded and then starved every time the heart beats has been solved with the help of engineering.
New approach uses ultrasound to measure fluid in the lungs
A team of engineering and medical researchers has found a way to use ultrasound to monitor fluid levels in the lung, offering a noninvasive way to track progress in treating pulmonary edema -- fluid in the lungs -- which often occurs in patients with congestive heart failure.
Cerebrospinal fluid shows promise as autism biomarker
Researchers from the UC Davis MIND Institute, University of North Carolina (UNC) and other institutions have found that altered distribution of cerebrospinal fluid (CSF) in high-risk infants can predict whether they will develop autism spectrum disorder (ASD).
More Amniotic Fluid News and Amniotic Fluid Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...