Nav: Home

Environment-friendly hydrophobic coating made with salt particles

November 09, 2016

Superhydrophobic surfaces have attracted global attention due to their water-repellant characteristics and myriad number and variety of applications. A team of researchers with the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH), led by Professor Dong Sung Kim and comprised of Research Professor Donghwi Choi and 4th year undergraduate student Jaewon Yoo, has found an elegant, cost-effective, and environmentally friendly method of applying a superhydrophobic layer to objects by using commercially available salt particles, polydimethylsiloxane (PDMS), and water.

In nature, one can observe such ultrahydrophobicity on a Lotus leaf. The leaf has microscopic protrusions on its surface which minimizes adhesion. As a result, water droplets along with any dirt particles on the surface simply roll right off the leaf. This effect is appropriately referred to the "lotus effect."

There have been numerous research into applying the "lotus effect" to other surfaces via simulating similar micro- and nanoscopic surface architectures. Anti-icing, anti-sticking, and self-cleaning characteristics are but a few of the many real-world applications of superhydrophobic surfaces. However, while the idea of a stain repellent fabric or a self-cleaning building is revolutionary, existing methods of applying a superhydrophobic layer required complicated procedures with exorbitant equipment costs and/or harsh chemicals.

Prof. Kim's research team has successfully overcome these barriers by utilizing a salt-dissolution-assisted etching process. Taking advantage of the fact that salt readily dissolves in water, the team exposed a salt-particle-embedded PDMS surface to an aqueous environment. The remaining PDMS surface becomes roughened with micro/nano-hierarchical topography which satisfy the standards of superhydrophobic surfaces. Furthermore, this elegant process can readily be applied to large or three-dimensional surfaces.

This remarkable result was recently published in Applied Surface Science -- the preeminent SCI level academic journal in the field. What is even more remarkable is the fact that Mr. Yoo, an undergraduate student, was one of the two main authors of this work.
-end-
Professor Kim, who supervised Dr. Choi and Mr. Yoo, anticipates that the salt-dissolution-assisted etching process will be utilized in various fields for numerous applications thanks to its malleable, cost-effective, and environmentally friendly process. He also expressed delight in the fact that the findings were the result of collaborative efforts between an undergraduate student and a research professor and remarked highly of both Dr. Choi and Mr. Yoo.

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP).

Pohang University of Science & Technology (POSTECH)

Related Salt Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
New technology helps reduce salt, keep flavor
A new processing technology out of Washington State University called microwave assisted thermal sterilization (MATS) could make it possible to reduce sodium while maintaining safety and tastiness.
The salt of the comet
Under the leadership of astrophysicist Kathrin Altwegg, Bernese researchers have found an explanation for why very little nitrogen could previously be accounted for in the nebulous covering of comets: the building block for life predominantly occurs in the form of ammonium salts, the occurrence of which could not previously be measured.
Salt helps proteins move on down the road
Rice chemists match models and experiments to see how salt modifies surface interactions in chromatography used to separate valuable drug proteins.
Mars once had salt lakes similar to Earth
Mars once had salt lakes that are similar to those on Earth and has gone through wet and dry periods, according to an international team of scientists that includes a Texas A&M University College of Geosciences researcher.
Marathoners, take your marks...and fluid and salt!
Legend states that after the Greek army defeated the invading Persian forces near the city of Marathon in 490 B.C.E., the courier Pheidippides ran to Athens to report the victory and then immediately dropped dead.
Water solutions without a grain of salt
Monash University researchers have developed technology that can deliver clean water to thousands of communities worldwide.
Solving the salt problem for seismic imaging
Automated imaging of underground salt bodies from seismic data could help streamline oil and gas exploration.
Higher salt intake can cause gastrointestinal bloating
A study led by researchers at the Johns Hopkins Bloomberg School of Public Health found that individuals reported more gastrointestinal bloating when they ate a diet high in salt.
Table salt compound spotted on Europa
New insight on Europa's geochemistry was hiding in the visible spectrum.
More Salt News and Salt Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.