How challenges change the way you think

November 09, 2017

Research published today in Frontiers in Behavioral Neuroscience shows that challenging situations make it harder to understand where you are and what's happening around you. A team of researchers showed participants video clips of a positive, a negative and a neutral situation. After watching the challenging clips -- whether positive or negative -- the participants performed worse on tests measuring their unconscious ability to acquire information about where and when things happen. This suggests that challenging situations cause the brain to drop nuanced, context-based cognition in favor of reflexive action.

Previous research suggests that long-term memories formed under stress lack the context and peripheral details encoded by the hippocampus, making false alarms and reflexive reactions more likely. These context details are necessary for situating yourself in space and time, so struggling to acquire them has implications for decision-making in the moment as well as in memory formation.

The research team, led by Thomas Maran, Marco Furtner and Pierre Sachse, investigated the short-term effects of challenging experiences on acquiring these context details. The team also investigated whether experiences coded as positive produced the same response as those coded as negative.

"We aimed to make this change measurable on a behavioral level, to draw conclusions on how behavior in everyday life and challenging situations is affected by variations in arousal," Thomas Maran explains.

The researchers predicted that study participants would be less able to acquire spatial and sequential context after watching challenging clips, and that their performance would worsen the same way faced with either a positive or a negative clip. To test this, they used clips of film footage used previously to elicit reactions in stress studies: one violent scene (which participants experienced as negative), one sex scene (which participants experienced as positive), and one neutral control scene.

Immediately after watching the clips, two groups of participants performed tasks designed to test their ability to acquire either spatial or sequential context. Both the sex scene and violent scene disrupted participants' ability to memorize where objects had been and notice patterns in two different tasks, compared to the neutral scene. This supports the hypothesis that challenging situations -- positive or negative -- cause the brain to drop nuanced, context-based cognition in favor of reflexive action.

So if challenging situations decrease the ability to pick up on context cues, how does this happen? The researchers suggest that the answer may lie in the hippocampus region of the brain -- although they caution that since no neurophysiological techniques were applied in this study, this can't be proven. Since existing evidence supports the idea that the hippocampus is deeply involved in retrieving and reconstructing spatial and temporal details, downgrading this function when faced with a potentially dangerous situation could stop this context acquisition and achieve the effect seen in this behavioral study. Reflexive reactions are less complex and demanding, and might stop individuals from making decisions based on unreliable information from unpredictable surroundings.

"Changes in cognition during high arousal states play an important role in psychopathology," Thomas Maran explains, outlining his hopes for the future use of this research. He considers that the evidence provided by this study may have important therapeutic and forensic applications. It also gives a better basis for understanding reactions to challenging situations -- from witnessing a crime to fighting on a battlefield -- and the changes in the brain that make those reactions happen.
-end-
Video version: https://youtu.be/TXDJwi5kAbw

Frontiers

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.