Scientists are developing biologically active compounds for an anti-tumor drug

November 09, 2017

Employees of RUDN University are actively involved in the development of chemical compounds isoxazoles, capable of suppressing the growth of malignant tumors. The results of the study were published in Tetrahedron.

Biological activity spectrum of isoxazoles is quite wide: they exhibit antiviral, anti-inflammatory and antitumor activity. Compounds containing the isoxazole ring are effective in treating cancer. In particular, one of them is known to effectively slow down the growth of cancer cells and polymerization of the tubulin protein, thus contributing to the decline of the inflammatory process. Another one reduces the activity of the protein Hsp90 (one of the heat shock proteins), which helps proteins in cancer cells to properly fold into structures and protects them from heat shock.

However, the development of isoxazole derivatives is extremely complex: the necessary catalysts and reagents are not available on an industrial scale, and the synthesis of this class of substances is ineffective and poorly regulated. Therefore, the goal of the authors was to create an efficient and inexpensive method of regioselective (with a certain predetermined arrangement of the functional substituents regarding the heteroatoms in the isoxazole ring) synthesis of isoxazoles from available materials under mild conditions that do not require high temperatures and other factors that may complicate the synthesis.

During the work, the scientists synthesized 3,4-diaryl-5-carboxy-4,5-dihydroisoxazole-2-oxides. These compounds include a central five-membered heterocycle, containing heteroatoms of nitrogen and oxygen, that occupy neighboring positions. There are also substituents at carbon atoms-various functional groups whose position concerning heteroatoms can be changed.

"The article develops biologically active compounds that exhibit antitumor activity. Employees of RUDN University had been studying the structure, geometry and interrelation between structure and properties.We found that with different arrangement of substituents in the cycle, the properties of the compound also change", as Victor Khrustalev, DSc in Physical Chemistry, Chair of Inorganic Chemistry Department of RUDN University said.

"The compounds possess a potential anti-cancer and antiviral activity, which, undoubtedly, must be carefully studied. In order to understand whether the compound is effective, it is necessary to carry out biological testing on living organisms. However, at first we should undertake a detailed study of how the manifested properties of the resulting compounds depend on the position of the substituents in the isoxazole cycle, that is, how the biological properties of the substance being developed depend on its structure", the scientist concluded.

The work was carried out in cooperation with scientists from N.D. Zelinsky Institute Of Organic Chemistry Russian Academy Of Sciences and Koltzov Institute of Developmental Biology of Russian Academy of Sciences.

RUDN University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to