Nav: Home

Researchers uncover genetic basis of natural variation in aging rate

November 09, 2017

Aging is characterized by a progressive decline in physiological functions and is a major risk factor for neurodegenerative disorders, cancer, and diabetes. Previous studies on aging mainly focused on the regulation of longevity, and more than 100 genes and numerous small compounds have been identified that regulate lifespan in organisms from yeast to mammals.

Lifespan extension induced by genetic mutations has been shown in recent studies not to necessarily delay age-related behavioral decline, suggesting that longevity and behavioral aging may be two dissociable processes. With the increase of life expectancy, prevention of age-related functional impairment has emerged as a major challenge. Despite the great advance in genetic control of animal lifespan, little was known about the regulatory mechanisms of healthy aging, i.e., aging with limited loss of physiological function.

Now, a new study carried out by researchers from Dr. CAI Shiqing's lab at the Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology of the Chinese Academy of Sciences has uncovered a genetic basis for natural variation in aging rates. The study was published in Nature.

The rate of aging is highly variable among individuals. It is believed that this variation is governed by environmental and genetic factors. Despite great interest in studying natural variation in aging rates to identify factors that control healthy aging, no such factor had been found. In order to explore this question, researchers from Dr. CAI Shiqing's lab studied the genetic origin of variability in the rate of aging using Caenorhabditis elegans as an animal model.

C. elegans is a tiny free-living nematode, about 1 mm in length. Due to its short lifespan and clear genetic background, C. elegans has been widely used in aging research. Many conserved longevity pathways were firstly identified in C. elegans.

Natural isolates of C. elegans from different parts of the world were shown in this research to have distinct rates of decline in virility, feeding behavior, and locomotion during aging. The researchers found that genetic variations in a novel neuropeptide coding gene (rgba-1) and its receptor gene npr-28 regulate the aging rate of worm behavior among wild isolates.

RGBA-1 from glial cells activates NPR-28 signaling in serotonergic and dopaminergic neurons to regulate behavioral decline in aging animals. The function of RGBA-1/NPR-28 signaling on behavioral aging depends on SIR-2.1-mediated activation of the mitochondrial unfolded protein response, a pathway known to modulate aging.

The researchers also performed population genetic analysis of rgba-1 and npr-28 and found that the two genes might have been subjected to a recent selective sweep, a natural selection process that leads to the reduction or elimination of genetic variations among individuals.

This study reveals the first genetic pathway underlying natural variation in the rate of aging, and uncovers the important role of neuropeptide-mediated glia-neuron signaling in controlling the aging rate. Further studies on natural variation in the rate of aging will pave the way for a comprehensive understanding of the biological regulation of healthy aging.

The antagonistic pleiotropy theory of the evolution of aging, proposed by George Williams in 1957, suggested that naturally selected genes promote survival and reproductive success in early life, but accelerate aging in later life. In contrast, this study suggests that the evolutionary selection of genes that offer benefits in early life could also result in a concomitant extension of lifespan or extension of health span, or both.

This research indicates that aging rates may have been affected by the emergence of new genes, natural selection, and interaction between different genetic loci, thus providing new insights into the evolutionary theory of aging.

This work was supported by grants from the Chinese Academy of Sciences and the National Natural Science Foundation of China.
-end-


Chinese Academy of Sciences Headquarters

Related Aging Articles:

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
Putting the brakes on aging
Salk Institute researchers have developed a new gene therapy to help decelerate the aging process.
New insights into the aging brain
A group of scientists at the Gladstone Institutes investigated why the choroid plexus contains so much more klotho than other brain regions.
We all want 'healthy aging,' but what is it, really? New report looks for answers
Led by Paul Mulhausen, MD, MHS, FACP, AGSF, colleagues from the American Geriatrics Society (AGS) set looking critically at what 'healthy aging' really means.
New insight into aging
Researchers at the Montreal Neurological Institute and Hospital (The Neuro) of McGill University examined the effects of aging on neuroplasticity in the primary auditory cortex, the part of the brain that processes auditory information.
Aging may be as old as life itself
Aging has had a bad rap since it has long been considered a consequence of biology's concentrated effort on enhancing survival through reproductivity.
A new link between cancer and aging
Human lung cancer cells resist dying by controlling parts of the aging process, according to findings published online May 10th in the Journal of Biological Chemistry.
American Federation for Aging Research experts featured in PBS special: Incredible Aging
Fourteen AFAR experts are among those featured in
More Aging News and Aging Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.