Nav: Home

A toast to the proteins in dinosaur bones

November 09, 2018

New Haven, Conn. - Burnt toast and dinosaur bones have a common trait, according to a new, Yale-led study. They both contain chemicals that, under the right conditions, transform original proteins into something new. It's a process that may help researchers understand how soft-tissue cells inside dinosaur bones can survive for hundreds of millions of years.

A research team from Yale, the American Museum of Natural History, the University of Brussels, and the University of Bonn announced the discovery Nov. 9 in the journal Nature Communications.

Fossil soft tissue in dinosaur bones has been a controversial topic among researchers for quite some time. Hard tissues, such as bones, eggs, teeth, and enamel scales, are able to survive fossilization extremely well. Soft tissues, such as blood vessels, cells, and nerves -- which are stored inside the hard tissue -- are more delicate and thought to decay rapidly after death. These soft tissues are composed mainly of proteins, which are believed to completely degrade within about four million years.

Yet dinosaur bones are much older, roughly 100 million years old, and they occasionally preserve organic structures similar to cells and blood vessels. Various attempts to resolve this paradox have failed to provide a conclusive answer.

"We took on the challenge of understanding protein fossilization," said Yale paleontologist Jasmina Wiemann, the study's lead author. "We tested 35 samples of fossil bones, eggshells, and teeth to learn whether they preserve proteinaceous soft tissues, find out their chemical composition, and determine under what conditions they were able to survive for millions of years."

The researchers discovered that soft tissues are preserved in samples from oxidative environments such as sandstones and shallow, marine limestones. The soft tissues were transformed into Advanced Glycoxidation and Lipoxidation end products (AGEs and ALEs), which are resistant to decay and degradation. They're also structurally comparable to chemical compounds that stain the dark crust on toast.

AGEs and ALEs are characterized by a brownish color that stains fossil bones and teeth that contain them. The compounds are hydrophobic, which means they are resistant to the normal effects of water, and have properties that make it difficult for bacteria to consume them.

Wiemann and her colleagues made their discovery by decalcifying fossils and imaging the released soft tissue structures. They applied Raman microspectroscopy -- a non-destructive method for analyzing both the inorganic and organic contents of a sample -- to the extracted fossil soft tissues. During this process, laser energy directed at the tissue causes molecular vibrations that carry spectral fingerprints for the chemicals that are present.

Co-author Derek Briggs, Yale's G. Evelyn Hutchinson Professor of Geology and Geophysics and a curator at the Yale Peabody Museum of Natural History, said the study points to localities where soft tissue may be found in fossil bones, including sandstones deposited from rivers, dune sands, and shallow marine limestones.

"Our results show how chemical alteration explains the fossilization of these soft tissues and identifies the types of environment where this process occurs," Briggs said. "The payoff is a way of targeting settings in the field where this preservation is likely to occur, expanding an important source of evidence of the biology and ecology of ancient vertebrates."
-end-
Additional co-authors of the study are Matteo Fabbri from Yale, Martin Sander and Tzu-Ruei Yang from the University of Bonn, Koen Stein from the University of Brussels, and Mark Norell from the American Museum of Natural History.

Yale University

Related Blood Vessels Articles:

3D printing, bioinks create implantable blood vessels
A biomimetic blood vessel was fabricated using a modified 3D cell printing technique and bioinks.
When blood vessels are overly permeable
In Germany alone there are around 400,000 patients who suffer from chronic inflammatory bowel diseases.
Nicotine-free e-cigarettes can damage blood vessels
A Penn study reveals single instance of vaping immediately leads to reduced vascular function.
Creating blood vessels on demand
Researchers discover new cell population that can help in regenerative processes.
Self-sustaining, bioengineered blood vessels could replace damaged vessels in patients
A research team has bioengineered blood vessels that safely and effectively integrated into the native circulatory systems of 60 patients with end-stage kidney failure over a four-year phase 2 clinical trial.
Found: the missing ingredient to grow blood vessels
Researchers have discovered an ingredient vital for proper blood vessel formation that explains why numerous promising treatments have failed.
How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.
Like a zipper -- how cells form new blood vessels
Blood vessel formation relies on the ability of vascular cells to move while remaining firmly connected to each other.
Blood vessels instruct brain development
The group of Amparo Acker-Palmer (Buchmann Institute of Molecular Life Sciences and the Institute of Cell Biology and Neuroscience, Goethe University) reported in a Research Article in the last issue of the journal Science a novel function of blood vessels in orchestrating the proper development of neuronal cellular networks in the brain.
Texas A&M team develops new way to grow blood vessels
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants.
More Blood Vessels News and Blood Vessels Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab