Nature-inspired crystal structure predictor

November 09, 2018

Scientists from Russia found a way of improving the crystal structure prediction algorithms, making the discovery of new compounds multiple times faster. The results of the study were published in Computer Physics Communications.

Given the ever increasing need for new technologies, chemists should constantly discover new higher-performance materials with better strength, weight, stability and other properties. The innovations in materials science that the modern world is craving for are virtually countless. The search for new materials is a challenging task, and if performed experimentally, takes a lot of time and money, for it often requires trying a huge number of compounds at different conditions. Computers can come to rescue, but they require clever algorithms: otherwise, sorting through possible options can go on for thousands of years until a good compound is found.

Things changed when in 2005 Artem R. Oganov, now Professor of Skoltech and Moscow Institute of Physics and Technology (MIPT), developed the evolutionary crystal structure prediction algorithm USPEX ? perhaps the most successful algorithm in the field, used by several thousand scientists worldwide.

USPEX only needs to know which atoms the crystal is made of. Then, it generates a small number of random structures whose stability is assessed based on the energy of interaction between the atoms. Next, an evolutionary mechanism starts, where chemists built in natural selection, crossover and mutations of the structures and their "descendants" until they find particularly stable compounds.

In their recent study, scientists from Skoltech, MIPT and Samara State Technical University, led by Artem R. Oganov, improved USPEX's first step that generates initial structures. Showing that purely random generation is not very effective, chemists again turned to nature for inspiration and developed a random structure generator based on the database of the topological types of crystal structures, amalgamating evolutionary approaches developed by Oganov and topological approaches developed by Professor Vladislav Blatov from Samara. Knowing that nearly all of the 200,000 inorganic crystal structures known to date belong to 3,000 topological types, one can very quickly generate an array of structures similar to the sought-for structure. The tests showed that thanks to the new generator, the evolutionary search copes with the prediction tasks 3 times faster compared to its previous version.

"The 3,000 topological types are the result of abstraction applied to real structures. Going the other way round, you can generate nearly all the known structures and an infinite number of unknown but reasonable structures from these 3,000 types. This is an excellent starting point for an evolutionary mechanism. Right from the start you most likely sample an area close to the optimal solution. You either get the optimal solution right in the beginning, or get somewhere near it and then get it by evolutionary improvement," explains Pavel Bushlanov, the first author of the study and a researcher at Oganov's laboratory at Skoltech.
-end-


Moscow Institute of Physics and Technology

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.