Beaches at risk due to the increase in atmospheric CO2

November 09, 2018

The appearance of dunes and beaches might soon be changing due to the increase in carbon dioxide emissions in the atmosphere, already a significant factor in the ongoing phenomena of climate change. The findings are the result of a study coordinated by the Institute for the Study of Anthropic Impacts and Sustainability in Marine Environments of the National Research Council (CNR-IAS) of Oristano, carried out in collaboration with Ca' Foscari University of Venice. The research, published in the journal Climatic Change, analyzed the chain reaction of effects on the marine environment triggered by the rise in CO2, estimating that from now to 2100 the accumulation of sediment at the base of the Mediterranean dune systems could fall by 31%, with erosion of beaches and an increased risk of flooding. The case study analyzed by the researchers was the Bay of San Giovanni, along the Sinis peninsula in Sardinia.

"Far from the mouths of rivers, dune-beach systems can be formed, either wholly or partially, by carbonate sediment produced by marine ecosystems, for example the underwater grasslands of Posidonia oceanica", explains Simone Simeone, CNR-las researcher and coordinator of the study. "These sediments may be dissolved by the increasing acidity of the seas; according to recent studies, by the end of the century the marine pH may have fallen by 0.4 units. What is causing the acidification of the oceans, as is widely known, the rising levels of carbon dioxide in the atmosphere."

The research has revealed that the effects of this phenomenon can distort the sedimentary balance of a beach-dune system. "We have found that a significant quantity of the sediment forming the beach-dune system is made up of the remains of organisms which are vulnerable to the effects of acidification. A decrease in pH could significantly affect the prevalence of these organisms in marine ecosystems and consequently reduce carbonate sediment," adds Simeone.

However, even submerged sediments would be at risk. "We are dealing with the 'foundations' of the beach-dune system, the sedimentary balance of which might be disrupted. Some beaches that are progressively growing or stable environments might turn into eroding environments. Furthermore, this research demonstrates that the effect of acidification on the beach-dune system, combined with the expected rise in sea level, will result in further withdrawal of the shore line as well as an increase in the adverse effects of floods," concludes Emanuela Molinaroli, professor of geomorphology and sedimentology for the Department of Environmental Sciences, Informatics and Statistics of Ca ' Foscari.
-end-


Università Ca' Foscari Venezia

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.