Nav: Home

The whole tooth: New method to find biological sex from a single tooth

November 09, 2018

A team led by UC Davis researchers have come up with a new way to estimate the biological sex of human skeletal remains based on protein traces from teeth.

Estimating the sex of human remains is important for archaeologists who want to understand ancient societies and peoples. Researchers can measure features of bones that differ between males and females, usually the pelvis. But skeletons of children and adolescents don't show these structural changes, and often sites may only yield a few pieces of bone.

DNA analysis is relatively expensive and DNA is quite fragile compared to other molecules, said UC Davis anthropologist Jelmer Eerkens.

Teeth, on the other hand, preserve well and are often found in archaeological sites.

A tooth can tell us a lot about the person to whom it belonged, Eerkens said.

"Wear patterns on the tooth can tell us about diet. Morphology of the tooth can tell us about ancestry (different populations around the world have slight variations in the shape of teeth). Plaque adhering to the tooth can tell us about bacteria in the person's mouth, including pathogenic bacteria. We can radiocarbon date the tooth to learn how old it is. And stable isotope data can tell us about how a person traveled across the landscape," he said.

The new method developed by Glendon Parker, associate adjunct professor of environmental toxicology at UC Davis with Julia Yip, a student in the UC Davis graduate program in forensic sciences, Brett Phinney of the UC Davis Proteomics Core Facility, Eerkens and colleagues uses sensitive mass spectrometry to measure proteins from teeth.

Tooth enamel genes on sex chromosomes

Amelogenin proteins play a role in the formation of tooth enamel. The genes for amelogenins happen to be located on the X and Y chromosomes that determine biological sex in humans, although amelogenin has nothing to do with this. Forensic DNA analyses for sex often depend on looking for the amelogenin X or Y genes.

Females will have amelogenin-X in their teeth; males should have both the X and Y versions of the protein.

Yip looked at 40 enamel samples from 25 individuals including both adult teeth and "milk teeth" from children. The ages of the teeth varied from 100 to 7,300 years before present, collected from archaeological sites in North America and Peru. She also looked at samples from modern teeth.

Yip was able to find traces of amelogenin-X in all the samples and amelogenin-Y in about half of them.

A positive result for amelogenin-Y means the tooth must have come from an XY male. Because amelogenin-Y is usually at lower levels than amelogenin-X, a tooth that tested negative for amelogenin-Y could be a false negative if there was just too little of the Y form to detect. To overcome this, the researchers were able to develop a statistical method to work out the probability of such false negatives given a certain amount of amelogenin-X.

The new method adds another piece to the information archaeologists can learn from a single tooth, Eerkens said.

"Like DNA our method is quantitative and does not depend on anatomical training, it is cheaper to run per sample (than DNA) and can be done in non-sterile conditions," Parker said. The method would likely be used alongside existing techniques, he said.
-end-
The study was published Nov. 9 in the Journal of Archaeological Science. Additional authors on the study are: at UC Davis, Michelle Salemi, Blythe Durbin-Johnson, Randall Haas and David Rocke; Caleb Kiesow, U.S. Air Force Academy, Colorado Springs; Jane Buikstra, Arizona State University; Haagen Klaus, George Mason University; and Laura Regan, Office of Net Assessment, U.S. Department of Defense.

The work was supported by the National Institutes of Justice and the National Science Foundation.

University of California - Davis

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...