Atmospheric and environmental changes impact organ-specific lupus flares

November 09, 2019

ATLANTA -- New research findings presented at the 2019 ACR/ARP Annual Meeting found a strong association between changes in atmospheric and environmental variables 10 days before a clinic visit and organ-specific lupus flares in patients with systemic lupus erythematosus (Abstract #695). Systemic lupus erythematosus, referred to as SLE or lupus, is a chronic disease that causes systemic inflammation which affects multiple organs. In addition to affecting the skin and joints, it can affect other organs in the body such as the kidneys, the tissue lining the lungs (pleura), heart (pericardium), and brain. Many patients experience fatigue, weight loss, and fever. Knowledge of the role environmental exposures play in the development of SLE and their association to SLE activity might help rheumatologists identify modifiable risk factors and mechanisms that give rise to lupus, according to the authors of this study. They examined how changes in fine particulate matter (PM2.5) concentration, ozone concentration, temperature, resultant wind, relative humidity and barometric pressure may predict organ-specific lupus flares. "Recent genome-wide association studies have identified more than 40 single nucleotide polymorphisms, which are important in lupus. Single nucleotide polymorphisms are the most common type of genetic variation among people but a relatively low percentage of people who have these genetic variations actually develop lupus, suggesting that environmental factors play an important role in lupus says George Stojan, MD, Assistant Professor of Medicine, Johns Hopkins Lupus Center, and the study's lead author. "There is strong epidemiologic evidence of association with several environmental factors, including crystalline silica exposure, cigarette smoking, and exogenous estrogens as well as potential associations between other exogenous factors such as mercury, ultraviolet radiation, solvents and pesticides.

When it comes to atmospheric impact, data from the Hopkins Lupus Center previously described significant seasonal variation in SLE disease activity with more arthritis activity in the spring and summer months, and an increase in renal activity in winter months, significantly higher anti-dsDNA antibody titers in the fall, and a significant variation of global disease activity through the year. While several studies in the past attempted to correlate global SLE disease activity with atmospheric changes, this is the first study looking at the association of organ specific lupus flares with atmospheric changes prior to patient visits."

The study included 1,628 patients who fulfilled four of the 11 ACR or SLICC classification criteria for SLE. The data ranged from 1999 to 2017. The maximum span between visits was 110 days with one-month time aggregation units. Disease activity was expressed as Physician Global Assessment (PGA) taken at every patient visit. Lupus flare was defined as a PGA score increase of one point or more compared to the previous visit.

Environmental and atmospheric data was obtained from the U.S. Environmental Protection Agency (EPA), including PM2.5 and ozone concentration, temperature, residual wind, relative humidity and barometric pressure. The researchers calculated the average values of each factor 10 days prior to patient visit. They also built univariate and multivariate models to study the association of the variables with lupus disease activity. They adjusted the models for age, sex, income, racial distribution, and rural versus urban residence. They used multivariate logistic regression to identify the significant determinants associated with lupus flares and performed regression for each organ flare outcome. They based regression inference on generalized estimating equations to account for the time repeated outcomes.

The study's results showed statistically significant associations between environmental factors and lupus in multiple areas. Rash, serositis, hematologic and joint flares were associated with an increase in temperature. Renal flares decreased as the temperature and ozone concentration increased. . Joint, neurologic, hematologic and pulmonary flares were associated with residual wind. Humidity was significantly associated with joint and serositis flares. PM2.5 concentration was significantly associated with rash, joints, serositis and hematologic flares.

While the study's findings show a strong association between changes in atmospheric and environmental variables 10 days prior to a patient clinic visit and organ-specific lupus activity at the visit, no environmental or atmospheric factor had a general association with all organ-specific lupus flares.

"These findings raise concern for a potentially significant impact of atmospheric changes on the occurrence of organ-specific lupus flares, but further studies are necessary to confirm this effect and to potentially explain it. Atmospheric effects may have an important impact on lupus clinical trial design and outcomes," says Dr. Stojan. "From a global perspective, these findings could implicate climate change and global warming as important factors in the rapidly changing epidemiology of lupus worldwide. Ultimately, these findings are the first step to vindicating the great majority of lupus patients who are convinced that their disease is influenced by weather changes and who inspired this research."

This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs, through the Lupus Research Program under Award No. W81XWH19-1-0793. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.
-end-
About the ACR/ARP Annual Meeting

The ACR/ARP Annual Meeting is the premier meeting in rheumatology. With more than 450 sessions and thousands of abstracts, it offers a superior combination of basic science, clinical science, tech-med courses, career enhancement education and interactive discussions on improving patient care. For more information about the meeting, visit https://www.rheumatology.org/Annual-Meeting, or join the conversation on Twitter by following the official #ACR19 hashtag.

About the American College of Rheumatology

The American College of Rheumatology (ACR) is an international medical society representing over 8,500 rheumatologists and rheumatology health professionals with a mission to empower rheumatology professionals to excel in their specialty. In doing so, the ACR offers education, research, advocacy and practice management support to help its members continue their innovative work and provide quality patient care. Rheumatologists are experts in the diagnosis, management and treatment of more than 100 different types of arthritis and rheumatic diseases.

ABSTRACT

Environmental and Atmospheric Factors in Systemic Lupus Erythematosus: A Regression Analysis

Background/Purpose: Understanding the role of environmental exposures in the development of SLE and their association with SLE activity may help identify modifiable risk factors and potential etiological mechanisms. We hypothesized that changes in fine particulate matter (PM2.5) concentration, ozone concentration, temperature, resultant wind, relative humidity, and barometric pressure are predictive of organ specific flares in lupus.

Methods: 1628 patients who fulfill 4 of the 11 ACR or SLICC classification criteria for SLE were included in the analysis. The data ranged from 1999 to 2017. Maximum distance between visits was 110 days with one-month time aggregation units. Disease activity was expressed as Physician Global Estimate (PGA), taken at every patient visit. A flare was defined as a PGA score increase of 1 point or more compared to the previous visit. Environmental and atmospheric data was obtained from the EPA, including PM2.5 and ozone concentration, temperature, residual wind, relative humidity, and barometric pressure. The average values of each factor 10 days prior to patient visit was calculated. Univariate and multivariate models were built in order to study the association of these variables with lupus disease activity. The models were adjusted for age, sex, income, racial distribution, and rural vs. urban patient residence. Multivariate logistic regression was used to identify significant determinants associated with lupus flares. Regression was performed for each organ flare outcome. Regression inference was based on generalized estimating equations (GEE) to account for the time repeated outcomes.

Results: Rash, serositis, hematologic, and joint flares were statistically significantly associated (p< 0.0.5) with an increase in temperature in univariate and multivariate analysis. Renal flares were negatively associated with increases in temperature (p< 0.05) in both univariate and multivariate analysis. Renal flares were negatively associated with increases in ozone concentration (p< 0.05) in univariate and multivariate analysis. Joint (p< 0.001), neurologic (p< 0.001), renal (p< 0.01), hematologic (p< 0.05), and pulmonary (p< 0.001) flares were directly associated with residual wind in univariate and multivariate analysis. Humidity was significantly associated with joint (p< 0.001), and serositis (p< 0.05) flares in univariate and multivariate analysis. Barometric pressure had no significant associations. PM2.5 concentration was significantly associated with rash (p< 0.001), joints (p< 0.001), serositis (p< 0.001), and hematologic flares (p< 0.001) in univariate and multivariate analysis.

Conclusions: There is a strong association between changes in atmospheric and environmental variables 10 days prior to patient visit and organ specific lupus activity at the visit. No environmental or atmospheric factor had a general association with all organ specific lupus flares. These data could add an important aspect to lupus trials, the outcomes of which may be affected by so far unrecognized environmental factors, and ultimately it could allow predictive modelling of lupus flares which would revolutionize the approach to treatment.

American College of Rheumatology

Related Lupus Articles from Brightsurf:

Systemic lupus erythematosus (SLE)
If renal remission is achieved therapeutically in cases of lupus nephritis (LN), the 10-year survival rate increases significantly.

Race-specific lupus nephritis biomarkers
A University of Houston biomedical researcher has discovered a difference in urinary biomarker proteins of lupus nephritis in patients according to race.

Lupus patients who take their medications lower their diabetes risk
Patients with lupus who take their medications as prescribed have much lower odds of developing type 2 diabetes, a common complication of the disease, finds a new study from the University of British Columbia.

Nearly 1 in 3 patients with lupus use prescription opioids for pain
A new study finds nearly one in three adults with lupus use prescription opioids to manage pain, despite a lack of evidence that opioids are effective for reducing pain from rheumatic diseases.

Developing therapeutic strategies for pregnant women with lupus
A highly gender-biased disease, lupus afflicts females some nine times more than males.

Lupus antibody target identified
Researchers have identified a specific target of antibodies that are implicated in the neuropsychiatric symptoms of lupus, according to human research published in JNeurosci.

B cells off rails early in lupus
Emory scientists could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously appreciated.

Can adverse childhood experiences worsen lupus symptoms?
Adverse childhood experiences (ACEs) encompass traumas such as abuse, neglect, and household challenges.

Unlocking the female bias in lupus
The majority of lupus patients are female, and new findings from the University of Pennsylvania shed light on why.

How a single faulty gene can lead to lupus
IBS-AIM (Academy of Immunology and Microbiology) research team at Pohang University of Science and Technology (POSTECH) in South Korea has discovered the role of a key gene involved in the autoimmune disease systemic lupus erythematosus (SLE) or lupus for short.

Read More: Lupus News and Lupus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.