Study sheds light on how MSCs suppress inflammation long after they leave the body

November 09, 2020

Durham, NC - A new study released today in STEM CELLS might just have solved the mystery behind why mesenchymal stem cells (MSCs) continue to suppress inflammation in the body long after the MSCs are cleared from the system. The findings, by researchers at Duke University (Durham, N.C.), could help overcome a critical barrier to MSCs being considered a reliable option when developing treatments for inflammatory diseases ranging from COVID-19 and cancer, to allergies, arthritis and more.

MSCs are stem cells that can be isolated from bone marrow, adipose and other tissue sources. Their ability to differentiate into a variety of cell types, along with their capability to self-renew, repair and heal, make them attractive candidates for therapeutic use.

However, there's a drawback, researchers say.

"While MSCs are widely used in clinical trials due to their ability to modulate inflammation, their success over the past 25 years has been varied - something that is likely a result of us not being able to totally understand how they work," said Anthony Filiano, Ph.D. He and Hyunjung Min, Ph.D., in Duke's Marcus Center for Cellular Cures, were co-leaders of the current study.

The ability for MSCs to suppress T cells is well documented in the lab, but little is known how they function in the body. "What we do know," Dr. Filiano continued, "is that after MSCs are injected into the body, they travel to the lungs and other tissues and then are rapidly cleared. Despite this, MSCs suppress the inflammatory response long-term. If the reason behind why and how this is happening can be determined, the information could be very helpful in developing new treatments for a variety of inflammatory diseases."

In search of an answer, the Duke team injected human cord tissue-derived MSCs (hCT-MSCs) into mice with induced lung inflammation. Twenty-four hours later when the mouse lungs were analyzed, "We found that pieces of the MSCs had been engulfed by monocytes and macrophages (types of disease-fighting cells), in effect clearing them from the animals' systems," Dr. Min reported. "We also noted long-term transcription changes in the cells that ate pieces of MSCs suppressed the activation of T cells." (Transcription is the process by which the information in a strand of DNA is copied into a new molecule of messenger RNA.)

Next, using a combination of computational and pharmacological approaches, the researchers identified potential receptors on monocytes and macrophages that mediated their interactions with the hCT-MSCs and blocked interaction with a pharmacological inhibitor. They also identified a key cytoplasmic organelle in hCT-MSCs necessary to reprogram the monocytes and macrophages.

"Our results shed light on how MSCs can modulate the inflammatory response without long-term engraftment using a previously undescribed form of cell communication," said Dr. Filiano, "and explain how MSCs have extended beneficial effects on the body despite being cleared just hours after administration."

Dr. Jan Nolta, Editor-in-Chief of STEM CELLS, said, "this study, which determines a mechanism by which the effects of MSCs on immune modulation are extended after the cells themselves are physically cleared, brings clarity to an longstanding and important question in the field. We congratulate the authors for this important report."
The full article, "Mesenchymal Stromal Cells Reprogram Monocytes and Macrophages with Processing Bodies," can be accessed at

About the Journal:STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. The journal covers all aspects of stem cells: embryonic stem cells/induced pluripotent stem cells; tissue-specific stem cells; cancer stem cells; the stem cell niche; stem cell epigenetics, genomics and proteomics; and translational and clinical research. STEM CELLS is co-published by AlphaMed Press and Wiley.

About AlphaMed Press: Established in 1983, AlphaMed Press with offices in Durham, NC, San Francisco, CA, and Belfast, Northern Ireland, publishes three internationally renowned peer-reviewed journals with globally recognized editorial boards dedicated to advancing knowledge and education in their focused disciplines. STEM CELLS® is the world's first journal devoted to this fast paced field of research. THE ONCOLOGIST® is devoted to community and hospital-based oncologists and physicians entrusted with cancer patient care. STEM CELLS TRANSLATIONAL MEDICINE® is dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

About Wiley: Wiley, a global company, helps people and organizations develop the skills and knowledge they need to succeed. Our online scientific, technical, medical and scholarly journals, combined with our digital learning, assessment and certification solutions, help universities, learned societies, businesses, governments and individuals increase the academic and professional impact of their work. For more than 200 years, we have delivered consistent performance to our stakeholders. The company's website can be accessed at

AlphaMed Press

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to