Keep the data coming

November 09, 2020

A pre-emptive memory management system developed by KAUST researchers can speed up data-intensive simulations by 2.5 times by eliminating delays due to slow data delivery. The development elegantly and transparently addresses one of the most stubborn bottlenecks in modern supercomputing--delivering data from memory fast enough to keep up with computations.

"Reducing the movement of data while keeping it close to the computing hardware is one of the most daunting challenges facing computational scientists handling big data," explains Hatem Ltaief from the research team. "This is exacerbated by the widening gap between computational speed and memory transmission capacity, and the need to store high-volume data on remote storage media."

The key challenge in processing big data is the cost and scale of storing the data in memory. The faster the memory, the more expensive it is, and the faster the data need to be moved between computing elements. Because only relatively small capacities of the fastest memory are available on even the most powerful supercomputing platforms, system engineers add successively larger, slower and more remote layers of memory to hold the tera- and petabytes of data typical of big data sets.

"It is in this hostile landscape that our system comes into play by reducing the overhead of moving data in and out of remote storage hardware," says Ltaief.

Ltaief with colleagues David Keyes and Tariq Alturkestani developed their multilayer buffer system (MLBS) to work proactively to maintain the data as close as possible to the computing hardware by orchestrating data movement among memory layers.

"MLBS relies on a multilevel buffering technique that outsmarts the simulation by making it 'see' all the hundreds of petabytes of data as being in fast memory," says Alturkestani. "The buffering mechanism prevents the application from stalling when it would have needed to access data located on remote storage, allowing the application to proceed at full speed with asynchronous computing operations."

This synergism provided by MLBS achieved a speedup of 2.5 times for a three-dimensional seismic exploration simulation involving hundreds of petabytes of data movements using KAUST's Shaheen-2 supercomputer.

"This approach also reduces the energy required to move data to and from remote storage media, which can be hundreds of times higher than the energy to perform a single computation on local memory," says Ltaief. "Using MLBS, we can mitigate the energy overhead of data movement, which is one of the main goals of our center."

King Abdullah University of Science & Technology (KAUST)

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to