New 'genomic' method reveals atomic arrangements of battery material

November 09, 2020

UPTON, NY--Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Stony Brook University (SBU), the Materials Project at DOE's Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California, Berkeley, and European collaborators have developed a new way to decipher the atomic-level structure of materials based on data gleaned from ground-up powder samples. They describe their approach and demonstrate its ability to solve the structure of a material that shows promise for shuttling ions through sodium-ion batteries in a paper just published in the journal Chemistry of Materials.

"Our approach combines experiment, theory, and modern computational tools to provide the high-quality structural data needed to understand important functional materials, even when only powder samples are available," said corresponding author Peter Khalifah, who holds a joint appointment at Brookhaven Lab and SBU.

The technique is in some ways a form of reverse engineering. Instead of solving the structure directly from the experimental data measured on the powder sample--a problem too complex to be possible for many materials--it uses computer algorithms to build and evaluate all the plausible structures of a material. By analyzing the "genome" associated with a material in this way, it can be possible to find the correct structure even when this structure is so complex that conventional methods for structure solution fail.

Battery cathode freeze-frame

For the study described in the paper, x-ray powder diffraction experiments were performed at the ALBA synchrotron in Barcelona, Spain, by European collaborators Matteo Bianchini and Francois Fauth, part of a team led by Christian Masquelier. Scientists used that facility's bright x-ray beams to study the atomic arrangement of a sodium-ion battery cathode material known as NVPF at a variety of temperatures ranging from room temperature down to the very low cryogenic temperatures at which atmospheric gases liquefy. This work is necessary because the disorder in the room temperature structure of NVPF disappears when it is cooled to cryogenic temperatures. And while batteries operate near room temperature, deciphering the material's cryogenic structure is still critically important because only this disorder-free, low-temperature structure can give scientists a clear understanding of the true chemical bonding that is present at room temperature. This chemical bonding environment strongly influences how ions move through the structure at room temperature and thus affects NVPF's performance as a battery material.

"The bonding environment around sodium atoms--how many neighbors each one has--is essentially the same at low temperature as it is at room temperature," Khalifah explained, but trying to capture those details at room temperature is like trying to get kids to sit still for a photo. "Everything gets blurred because the ions are moving around too quickly to allow a picture to be taken." For this reason, some of the bonding environments inferred from the room temperature data are not correct. In contrast, cryogenic temperatures freeze the motion of sodium ions to provide a true picture of the local environment where the sodium ions sit when they're not moving around.

"As the material is cooled, twenty-four neighboring sodium ions are each forced to choose one of two possible sites, and their lowest-energy preferred 'ordering' pattern can be resolved," Khalifah said.

A preliminary analysis of the powder x-ray diffraction data by Bianchini indicated that the pattern of ordering is very complex. For materials with such complex orderings, it is not typically possible to solve their three-dimensional atomic structure using powder diffraction data.

"Powder diffraction data gets flattened to one dimension, so a lot of information is lost," Khalifah said.

But materials made of many different types of elements, as is the case for NVPF--which is built from atoms of sodium, vanadium, phosphorus, fluorine, and oxygen with an overall chemical formula of Na3V2(PO4)2F3--are too hard to grow into larger crystals for more conventional 3-D x-ray crystallography.

So, the Brookhaven group collaborated with John Dagdelen and other researchers at Lawrence Berkeley National Laboratory to develop a new "genomic" approach that can solve very complex structures using only powder diffraction data. The collaborative work was carried out within the Materials Project, a DOE-funded research team led by Kristin Persson at LBNL that is developing innovative computational approaches for accelerating the discovery of novel functional materials.

"Instead of using the powder diffraction data to directly solve the structure, we took an alternate approach," Khalifah said. "We asked, 'what are all the plausible arrangements of sodium ions in the structure,' and then we tested each of those in an automated fashion to compare it with the experimental data to figure out what the structure was."

The NVPF structure is one of the most complex ever solved for a material using only powder diffraction data.

"We couldn't have done this science without modern computational tools--the enumeration methods used to generate the chemically plausible structures and the sophisticated automated scripts for refining those structures that utilized the pymatgen (Python Materials Genomics) software library," Khalifah said.

Zeroing in on the structure

Based on the available structural knowledge for NVPF and on a set of basic chemical rules for bonding, there are more than half a million plausible ordering patterns for the sodium atoms in NVPF. Even after applying computational algorithms to identify equivalent structures generated through different ordering choices, nearly 3,000 unique possible orderings remained.

"These 3,000 trial structures are more than can reasonably be tested by hand, but their correctness could be evaluated by a single computer working non-stop for about two days," Khalifah said.

The correctness of each trial structure was evaluated using software to predict what its powder x-ray diffraction pattern would look like, and then comparing the calculated results to the experimentally measured diffraction data, work done by Stony Brook Ph.D. student Gerard Mattei. If the difference between the predicted and observed diffraction patterns is relatively small, the software can optimize any trial structure by tweaking the positions of its constituent atoms to improve the agreement between the calculated and observed patterns.

But even after such tweaking, almost 2,500 of the optimized structures could be used to fit the experimental diffraction data well.

"We weren't expecting to get so many good fits," Khalifah said. "So, we had a second challenge of determining which one of those many possible structures was correct by looking at which one had the correct symmetry."

Crystallographic symmetry provides the rules that constrain how atoms can be arranged in a material, so fully understanding the symmetry of a structure is necessary to correctly describe it, Khalifah noted.

The team had generated each of the trial structures with a specific set of symmetry constraints. And although it was very challenging to determine the true symmetry of any one trial structure after its optimization, a comparison of all 2,500 optimized structures allowed the researchers to determine which symmetry elements were needed to correctly describe the true structure of NVPF.

The ability to compare results across many trials allows a higher degree of confidence in the final solution and is an additional advantage that the novel method used in this work has over traditional approaches. Furthermore, theoretical calculations done by LBNL researchers John Dagdelen and Alex Ganose indicated that the final solution is stable against distortions, confirming the validity of this result.

The solved structure revealed that there is much greater diversity in the bonding of sodium atoms than had been previously recognized.

"From the room temperature data, it misleadingly appeared that all sodium atoms were bonded to either six or seven neighboring atoms," Khalifah said. "In contrast, the low temperature data clearly indicated that some sodium atoms have as few as four neighbors. One result of this is that the sodium atoms with fewer neighbors are much less locked into place and are thus expected to have an easier time moving throughout the structure--a property that is essential for battery function."

The authors believe this novel approach should be broadly applicable for solving the complex structures that commonly occur in battery materials when ions are removed during charging. This is especially relevant in materials used in sodium- and potassium-ion batteries, which are being developed as lower-cost and more-abundant alternatives to lithium-ion battery materials. This research thus should play an important role in unlocking the potential of earth-abundant materials that can be used to scale up energy storage capabilities to meet societal needs such as grid-scale storage.

This research was funded by the DOE Office of Science.
Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

Follow @BrookhavenLab on Twitter or find us on Facebook

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: Enumeration as a tool for structure solution - a materials genomic approach to solving the cation-ordered structure of Na3V2(PO4)2F3 []

DOE/Brookhaven National Laboratory

Related Sodium Articles from Brightsurf:

Sodium found to regulate the biological clock of mice
A new study from McGill University shows that increases in the concentrations of blood sodium can have an influence on the biological clock of mice, opening new research avenues for potentially treating the negative effects associated with long distance travel or shift work.

Researchers develop viable sodium battery
Washington State University and Pacific Northwest National Laboratory researchers have created a sodium-ion battery that holds as much energy and works as well as some commercial lithium-ion battery chemistries, making for a potentially viable battery technology out of abundant and cheap materials.

Elucidating the mechanism of a light-driven sodium pump
Researchers at the Paul Scherrer Institute PSI have succeeded for the first time in recording, in action, a light-driven sodium pump from bacterial cells.

Intravenous sodium nitrite ineffective for out-of-hospital cardiac arrest
Among patients who had an out-of-hospital cardiac arrest, intravenous sodium nitrite given by paramedics during resuscitation did not significantly improve their chances of being admitted to or discharged from the hospital alive, according to research presented at the American College of Cardiology's Annual Scientific Session Together with World Congress of Cardiology (ACC.20/WCC).

Study finds glutamates such as MSG can help reduce Americans' sodium intake
A new study indicates that the substitution of glutamates such as MSG for salt can reduce Americans' sodium intake by up to 7-8 percent.

High-performance sodium ion batteries using copper sulfide
Researchers presented a new strategy for extending sodium ion batteries' cyclability using copper sulfide as the electrode material.

Updated dietary reference intakes for sodium and potassium
A new report from the National Academies of Sciences, Engineering, and Medicine reviews current evidence and updates intake recommendations known as the Dietary Reference Intakes (DRIs) for sodium and potassium that were established in 2005.

Sodium intake associated with increased lightheadedness in context of DASH-sodium trial
Researchers at Beth Israel Deaconess Medical Center found that higher sodium intake, when studied in the context of the DASH-Sodium trial (Dietary Approaches to Stop Hypertension), increases lightheadedness.

Sodium is the new lithium: Researchers find a way to boost sodium-ion battery performance
NITech scientists have found the desirable component for sodium-ion batteries (SIB), which could contribute to boost SIB performance such as speed of charge.

Angiotensin receptor blockers normalize sodium excretion
Drugs that inhibit a hormone that constricts blood vessels also help improve sodium excretion in blacks who hold onto too much sodium in the face of stress, investigators report.

Read More: Sodium News and Sodium Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to