Bird flu virus triggers worse inflammation in human lung cells than human flu viruses

November 10, 2005

Scientists might have identified one of the reasons why the bird flu virus H5N1 is so deadly to humans. A study published today in the open access journal Respiratory Research reveals that, in human cells, the virus can trigger levels of inflammatory proteins more than 10 times higher than the common human flu virus H1N1. This might contribute to the unusual severity of the disease caused by H5N1 in humans, which can escalate into life-threatening pneumonia and acute respiratory distress.

Michael Chan and colleagues from the University of Hong Kong and collaborators in Vietnam, studied the levels of a subset of the pro-inflammatory proteins called 'cytokines' and 'chemokines', induced by the virus H5N1 in human lung cells, in vitro. The authors compared protein levels induced by strains of the H5N1 virus that had appeared in Hong Kong in 1997 (H5N1/97) and Vietnam in 2004 (H5N1/04), with levels induced by the human flu virus H1N1.

Their results show that H5N1 is a much more potent inducer of pro-inflammatory proteins than H1N1. Twenty-four hours after infection with H5N1/04, the levels of the chemokine IP-10 in bronchial epithelial cells reach 2200 pg/ml, whereas in cells infected with H1N1 they only reach 200pg/ml. In H5N1/97-infected cells, IP-10 levels reach 1750 pg/ml. Similar results were found for other chemokines and cytokines.

Chemokines and cytokines are the "messengers of the immune system" and are critical in coordinating and regulating the immune response. Altering this balance is likely to lead to an uncontrolled inflammatory response in the lung and probably explains, at least in part, the severe lung inflammation associated with avian flu virus H5N1.
-end-
Article:
Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells.
MCW Chan, CY Cheung, WH Chui, SW Tsao, JM Nicholls, YO Chan, RWY chan, HT Long, LLM Poon, Y Guan and JSM Peiris
Respiratory Research, 2005, in press

BioMed Central

Related Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Will the COVID-19 virus become endemic?
A new article in the journal Science by Columbia Mailman School researchers Jeffrey Shaman and Marta Galanti explores the potential for the COVID-19 virus to become endemic, a regular feature producing recurring outbreaks in humans.

Smart virus
HSE University researchers have found microRNA molecules that are potentially capable of repressing the replication of human coronaviruses, including SARS-CoV-2.

COVID-19 - The virus and the vasculature
In severe cases of COVID-19, the infection can lead to obstruction of the blood vessels in the lung, heart and kidneys.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Virus prevalence associated with habitat
Levels of virus infection in lobsters seem to be related to habitat and other species, new studies of Caribbean marine protected areas have shown.

Herpes virus decoded
The genome of the herpes simplex virus 1 was decoded using new methods.

A new biosensor for the COVID-19 virus
A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus.

How at risk are you of getting a virus on an airplane?
New 'CALM' model on passenger movement developed using Frontera supercomputer.

Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.

Read More: Virus News and Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.