Pitt professor, student win Feynman prizes for work on 'molecular Lego® set'

November 10, 2005

A University of Pittsburgh researcher and his student have been awarded prestigious prizes from the Foresight Nanotech Institute for their work in developing a "molecular Lego® set" that will enable, for the first time, the quick manufacture of sturdy, predictable nanostructures.

Christian Schafmeister, assistant professor of chemistry at the University of Pittsburgh and a researcher in the University's Institute of NanoScience and Engineering (INSE), was awarded the 2005 Foresight Institute Feynman Prize for experimental work, named in honor of pioneer physicist Richard Feynman. Schafmeister's student Christopher Levins, a doctoral candidate in chemistry, received the Foresight Distinguished Student Award for work that he did within the umbrella of Schafmeister's research. They received the awards at the institute's awards banquet Oct. 26.

Schafmeister has designed 14 small molecules, each of which is about half a nanometer across and includes two removable molecular caps. Controlled chemical reactions strategically strip away the caps, causing the molecules to link together in predictable ways with pairs of stiff bonds--similar to Lego® blocks. He has snapped together 3.6-nanometer rods and 1.8-nanometer crescents, and has developed software that can aid in the construction of a wide variety of shapes.

With this method of nanofabrication, which he calls "a completely new field," Schafmeister is using his blocks to craft hinged, molecular traps that attract specific molecules, snap shut, and light up, serving as perfect chemical sensors--just one of an almost infinite number of possible uses. Molecules with customized cavities could serve as catalysts or biomedical agents. Because the molecules are large enough to have interesting functions and rigid, designed shapes, they hold great promise as nanoscale parts for future atomically precise nanoscale machines.

"We're developing a new programming language for matter," said Schafmeister, "and we're writing, 'Hello, world.'"

Levins is working on one approach to constructing complex nanoscale devices by developing a systematic methodology for the design and synthesis of rigid macromolecular scaffolds. "Chris made some of the first breakthroughs--building blocks and larger structures--in our research," said Schafmeister.

"We're proud to see Dr. Schafmeister and his student honored for nanotechnology research," said University Provost James V. Maher. "Pitt's program in nanoscience is focused on platform technologies, like Dr. Schafmeister's, that will have a real impact on future research and applications."
-end-
The Foresight Nanotech Institute is the leading think tank and public interest organization focused on nanotechnology. Founded in 1986, the institute works to ensure the beneficial implementation of nanotechnology. For more information on the institute, visit www.foresight.org.

The INSE is an integrated, multidisciplinary organization that brings coherence to the University's research efforts and resources in the fields of nanoscale science and engineering. For more information on INSE, visit www.nano.pitt.edu.

University of Pittsburgh

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.