One signal elicits thousands of answers

November 10, 2006

Cell signaling mechanisms often transmit information via protein modifications, most importantly the reversible attachment of phosphate, the so-called protein phosphorylation. Researchers at the Max Planck Institute of Biochemistry in Martinsried have now developed a technology to identify and quantify the specific sites in proteins that get phosphorylated in answer to certain stimuli in living cells. Under the lead of Matthias Mann, the scientists found 6,600 phosphorylation sites - 90 percent of which were unknown - in 2,244 proteins and observed their temporal dynamics. All these phosphorylation sites are now listed in the newly created Phosida database to make them available for efficient use by scientists working in different areas, among them tumour researchers: Defects in cellular signaling often occur in many types of cancer (Cell, November 2, 2006).

The mammalian cell constantly receives signals from its surroundings to which it has to respond appropriately. Growth factors, for example, can lead to growth of a cell, its differentiation or proliferation. Defects in these tightly regulated and controlled processes can cause cancer and other human diseases. In recent decades, knowledge of the important players in signal transduction has been painstakingly accumulated, mainly through the study of individual molecules in specific pathways. This approach may fall short though, because the cellular answer to environmental stimuli often doesn't show on the level of production but the modification of proteins after their synthesis. "Phosphorylation is the most important and most thoroughly researched modification," says Mann. "An estimated one-third of all cellular proteins are affected. Therefore, the dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation."

Mann and his team improved and extended a previously developed technology, which enabled them to identify for the first time all phosphorylations of all proteins in living cells - and in their temporal dynamic. For this approach cell cultures were stimulated by EGF for different lengths of time. The "Epidermal Growth Factor" is known for causing the phosphorylation of a multitude of enzymes and proteins along a signal transduction pathway. In the following step all proteins were isolated from the cells, divided into different fractions and analysed via mass spectrometry. This technology allows the precise identification of structure and composition of unknown compounds, here the cellular proteins. In total, 6,600 specific phosphorylation sites in 2,244 proteins were detected. "Comparing our results with the listings in existing databases showed that more than 90 percent of our sites were novel. This suggests that the majority of cellular phosphorylation sites still await identification."

Equally surprising was the discovery that about half of all cellular proteins harbour more than one phosphorylation sites, which in many cases behave differently. "This makes more than one way of phosphorylation possible where proteins serve as integrating platforms for a variety of incoming stimuli", says Mann. "This integration of signals could be independent, with phosphorylation of each site occurring separately from the others. It could also be dependent so that a 'priming site' has to be phosphorylated first for the subsequent modification of all other sites in the protein. In any case, the degree of phosphorylation should always be measured site specifically rather than for the protein as a whole". For the efficient use of their results the research team created the Phosida database (www.phosida.com), where all the phosphorylation sites are listed with additional information and connections to respective listings in other databases. An interesting service for scientists with widely varying expertise, not the least for tumour researchers because they have to investigate defects in cellular signaling which often occurs in progressed forms of cancer. The new technology will allow the search for new data - which might not be necessary too soon. "Our study revealed more phosphorylation sites than all previous studies combined," says Mann.
-end-
Related links:

[1] Phosida database
http://www.phosida.com/

Original work:

Jesper V. Olsen, Blagoy Blagoev, Florian Gnad, Boris Macek, Chanchal Kumar, Peter Mortensen, and Matthias Mann

Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks

Cell, November 2, 2006

Max-Planck-Gesellschaft

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.