Researchers aim to over-stress already taxed mantle cell lymphoma cells

November 10, 2008

AUGUSTA, Ga. - Cancer cells are already stressed by the fast pace they require to grow and spread and scientists believe a little more stress just may kill them.

"Think about an assembly line in a factory that is working five times faster than normal," said Dr. Kapil Bhalla, director of the Medical College of Georgia Cancer Center. "There is a lot of stress but you need workers to keep going. Some of them fall out, some get bent out of shape."

His research team believes they can disrupt the over-stressed assembly line of mantle cell lymphoma and possibly similar cancers such as pancreatic, liver and breast, by taking away support needed for rapid protein turnover and by clogging up the mechanism for eliminating poorly made ones.

Mantle cell lymphoma, an aggressive cancer of the lymphatic system that mostly occurs in middle age, responds initially to chemotherapy and antibiotics, but often returns, said Dr. Bhalla. Patients have a median survival of three to four years. This cancer affects b lymphocytes, immune cells which make antibodies to fight infection. Ironically, in the process of rearranging genes to make antibodies to a specific invader, mistakes happen, and a would-be protector becomes cancer.

MCG researchers found that to keep their fast pace, these now-malignant cells need increased activity of heat shock protein 90. "Cancer cells require hsp90 for keeping their proteins in active conformation to do their job. That is what cancer is addicted to," said Dr. Bhalla, Cecil F. Whitaker, Jr., M.D./Georgia Research Alliance Eminent Scholar in Cancer and Georgia Cancer Coalition Distinguished Cancer Scholar. Hsp90 is one of the more common molecular chaperones, which help proteins get made, moved, folded and function. Its levels and activity are upregulated in response to stress.

They also found that the usually busy endoplasmic reticulum of these cells, which is supposed to be making normal antibodies, is stressed by making hyperactive, cancer-associated proteins. Stepped-up protein production also means more misfolded proteins that the proteasome must deal with. "It's all stressed-out machinery," Dr. Bhalla said.

To help push cancer cells over the edge, the researchers are inhibiting hsp90, so the cells lose the molecular chaperone function required to maintain their fast pace. This also puts more stress on the endoplasmic reticulum. Independently hsp90 inhibitors are known to selectively kill cancer cells. But researchers also are clogging up the proteasome, the machinery for chopping up misfolded proteins, recycling some products and eliminating what's left. Much like a sink won't work with a clogged garbage disposal, mantle cell lymphoma cells will start backing up. When a cell detects excessive misfolded proteins, it first has a protective response, but if the problem persists, it commits suicide.

With support from a five-year, $1.5 million grant from the National Cancer Institute, the researchers are using hsp90 and proteasome inhibitors to study protective versus lethal endoplasmic reticulum stress as a way to get rid of mantel cell lymphoma cells. The laboratory studies are being done in human mantle cell lymphoma cells as well as an animal model the researchers developed.

The drugs they are using already are in early clinical trials for a variety of cancers but have not yet been packaged together, Dr. Bhalla said. "We kill cancer cells and a lot of them with this strategy." Still, at least one more inhibitor may get added to the mix. After the rather brutal attack at the cancer's molecular underpinnings, the immune system comes in to essentially mop the floor, but researchers have found cancer cells can still get a pass from an enzyme called IDO. A team of MCG researchers led by Dr. David Munn is exploring IDO's therapeutic potential in cancer. Fetuses use IDO to avoid rejection by the mother's immune system and tumors appear to use it as well. Dr. Bhalla suspects an IDO inhibitor, already under study for lung cancer and other tumors, likely will get a shot at mantle cell lymphoma as well.
-end-


Medical College of Georgia at Augusta University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.