Scientists decipher the formation of lasting memories

November 10, 2009

Researchers Researchers at the Swedish medical university Karolinska Institutet have discovered a mechanism that controls the brain's ability to create lasting memories. In experiments on genetically manipulated mice, they were able to switch on and off the animals' ability to form lasting memories by adding a substance to their drinking water. The findings, which are published in the scientific journal PNAS, are of potential significance to the future treatment of Alzheimer's and stroke.

"We are constantly being swamped with sensory impression," says Professor Lars Olson, who led the study. "After a while, the brain must decide what's to be stored long term. It's this mechanism for how the connections between nerve fibers are altered so as to store selected memories that we've been able to describe."

The ability to convert new sensory impressions into lasting memories in the brain is the basis for all learning. Much is known about the first steps of this process, those that lead to memories lasting a few hours, whereby altered signalling between neurons causes a series of chemical changes in the connections between nerve fibers, called synapses. However, less is understood about how the chemical changes in the synapses are converted into lasting memories stored in the cerebral cortex.

A research group team at Karolinska Institutet has now discovered that signalling via a receptor molecule called nogo receptor 1 (NgR1) in the nerve membrane plays a key part in this process. When nerve cells are activated, the gene for NgR1 is switched off, and the team suspected that this inactivation might be important in the creation of long-term memories. To test this hypothesis they created mice with an extra NgR1 gene that could remain active even when the normal NgR1 was switched off.

"Doing this, we found that the ability to retain something in the memory for the first 24 hours was normal in the genetically modified mice," says Professor Olson. "However, two different memory tests showed that the mice had serious difficulties converting their normal short-term memories to long-term ones, the kind that last for months."

In order to be able to switch the extra NgR1 gene on and off, the group attached a regulatory mechanism to the gene that reacted to a harmless additive in their drinking water. When the extra gene was then switched off, the mice retained their normal ability to form long-term memories. By subsequently switching it off at different times after a memory-forming event, they were able to pinpoint the effect of the NgR1 gene to the first week after such an event.

"We know that concussion can cause someone to forget events that occurred in the week before the injury, what we call retrograde amnesia, even though they can remember events that occurred earlier than about a week before. This we believe tallies with our findings," says Alexandra Karlén, one of the scientists involved in the study.

The scientists hope that their findings will eventually be of use in the development of new treatments for memory impairments, such as those related to Alzheimer's and stroke. Medicines designed to target the NgR1 receptor system would be able to improve the brain's ability to form long-term memories. The studies were conducted in collaboration with American researchers at the National Institute on Drug Abuse (NIDA), NIH.
-end-
Publication: '"Nogo receptor 1 regulates formation of lasting memories'", A. Karlén, T. E. Karlsson, A. Mattsson, K. Lundströmer, S. Codeluppi, T. M. Pham, C. M. Bäckman, S. O. Ögren, E. Åberg, A. F. Hoffman, M. A. Sherling, C. R. Lupica, B. J. Hoffer, C. Spenger, A. Josephson, S. Brené, & L. Olson, PNAS, Online Early PublicationEdition, 9-13 November 2009.

Download press photographs: http://ki.se/pressimages

For further information, please contact:

Professor Lars Olson
Department of Neuroscience
Tel: +46 (0)8-524 870 50 or +46 (0)70-670 3388
Email: Lars.Olson@ki.se

PhD Alexandra Karlén
Department of Cell and Molecular Biology
Ludwig Institute for Cancer Research
Tel: +46 (0)8-524 87535 or +46 (0)70-408 31 57
Email: alexandra.karlen@licr.ki.se

Press Officer Katarina Sternudd
Tel: +46 (0)8-524 838 95
Email: katarina.sternudd@ki.se

Karolinska Institutet is one of the leading medical universities in Europe. Through research and education, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine. For more information, visit ki.se

Karolinska Institutet

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.