Feeling the heat: 30 tons of fine control for fusion plasmas

November 10, 2011

A major upgrade to the DIII-D tokamak fusion reactor operated by General Atomics in San Diego will enable it to develop fusion plasmas that can burn indefinitely. Researchers installed a movable, 30-ton particle-beam heating system that drives electric current over a broad cross section of the magnetically confined plasma inside the reactor's vacuum vessel. Precise aiming of this beamline allows scientists to vary the spatial distribution of the plasma current to maintain optimal conditions for sustaining the high temperature plasmas needed for fusion energy production.

"The ability to systematically adjust the aiming of such a particle beam to control the shape of the current profile is unique to DIII-D among the world's tokamak experi-ments," says Dr. Mickey Wade, Director of Experimental Science for the project. "It provides a timely opportunity for testing and improving our understanding of how internal current and pressure profiles will interact as future burning plasma experiments such as ITER approach steady-state conditions."

The capability to tailor the shape of the current profile is important for maximizing the energy content of the plasma while minimizing the power needed to maintain the large toroidal current that's key to achieving magnetic confinement. Using the beam to broaden the distribution of current across the plasma strengthens the magnetic field structure to support higher plasma pressures. This, in turn, leads to a self-driven "bootstrap" current* which effectively multiplies the original current drive, reducing the need for other external current sources. The will allow the DIII-D team to study the physics of fully self-sustaining plasmas to guide design and operation of future fusion experiments such as the ITER tokamak now under construction in France.

"The project was an enormous challenge, tilting a 30 ton high voltage beam system so that it can be injected at different angles into the plasma with millimeter accuracy," said Tim Scoville, Neutral Beam Systems Manager. "The beam system is nearly as large as the tokamak!"

Physics studies with the newly modified beam have begun, and the system has already been used to make a broader current profile than was previously possible.

"This represents a major step in DIII-D's capability for developing advanced 'steady state' fusion plasmas," said David Hill, DIII-D Deputy Program Director.

The 12 month, $7 million upgrade was completed on time, with the new system commissioned during the latest DIII D cam¬paign. The particle beam upgrade forms part of a larger package of developments underway at the facility, with increases in microwave electron heating to access more burning plasma relevant regimes, and new tools being implemented to develop materials and explore how to handle the hot plasma exhaust.
This work supported by U.S. Department of Energy under DE-FC02-04ER54698.

American Physical Society

Related Plasma Articles from Brightsurf:

Plasma treatments quickly kill coronavirus on surfaces
Researchers from UCLA believe using plasma could promise a significant breakthrough in the fight against the spread of COVID-19.

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.

A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.

Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.

Read More: Plasma News and Plasma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.