Stem cell research hopes to repair brain damage of Parkinson's disease

November 10, 2011

Australian scientists have developed a new technique using stem cells, in the hope to replace damaged cells in Parkinson's disease. The technique could be developed for application in other degenerative conditions.

Drs Clare Parish and Lachlan Thompson lead the research from the Florey Neuroscience Institutes and the University of Melbourne. They are members of the newly established Stem Cells Australia collaboration being launched at the University of Melbourne today.

Stem Cells Australia is a new $21m Australian Research Council Special Research Initiative bringing together Australia's leading stem cell scientists.

Led by internationally renowned stem cell expert Professor Martin Pera and administered by the University of Melbourne, the Initiative links Australia's leading experts in bioengineering, nanotechnology, stem cell biology, advanced molecular analysis and clinical research to solve some of the our biggest health challenges.

"Stem Cells Australia will not only play a major role in leading Australian research into stem cell science, it will help the Australian community to understand the impact of scientific breakthroughs in this fast-paced and fascinating field," he said.

Opening Stem Cells Australia on behalf of Innovation Minister Senator Kim Carr, ARC Chief Executive Officer Professor Margaret Sheil said the Initiative would make an important contribution to life-changing research.

"It will enable the delivery of stem cell research breakthroughs that will help ease suffering and save lives," Professor Sheil said.

Key areas of research include investigating the use of stem cells to rejuvenate and repair damaged and diseased cells in organs such as the heart, brain and blood that are affected in conditions such as heart disease, Parkinson's disease, stroke and Leukemia.

In regards to Parkinson's disease there is a progressive and permanent loss of a group of dopamine-producing brain cells that form an essential pathway in the brain circuitry controlling movement.

Drs Parish and Thompson's respective research groups have developed a novel technique using stem cells to replace the dopamine-producing brain cells.

The first step of the technique is led by Dr Parish's team which has expertise in generating the dopamine brain cells that are missing in Parkinson's disease.

"By following what we know about brain development we have been able to re-create an environment in the culture dish that allows us to generate specific cell types that may be therapeutic," she said.

"A limitation of the procedure, however, is that it is inefficient. This means that only around 30 per cent of the cells become dopamine brain cells while the others may remain as stem cells. This poses significant risks in a transplantation setting because the stem cells may continue to grow and form tumours," she said.

Dr Lachlan Thompson's team is working on an innovative approach using a state of the art cell-sorting technology to solve this problem.

"Overall we have identified some interesting findings that help us to isolate the dopamine brain cells and discard the stem cells prior to transplantation," he said.

"It's a strategy that we hope will bring us a step closer to clinical trials for a stem cell based treatment for Parkinson's. The broader significance is that this novel approach will likely be applicable to the development of stem cell-based treatments for other neurological conditions such as stroke, motor neuron disease and Huntington's disease," he said.

"There is still a lot of basic research to do to develop this technology to a point where it would be safe to proceed with trials in patients, however, there's no reason to think that it couldn't happen within the next 5-10 years with the proper funding."

Stem Cells Australia is a collaboration with eight Australian research partners: The University of Melbourne, Monash University, Walter and Eliza Hall Institute of Medical Research, The University of Queensland, University of NSW, Victor Chang Cardiac Research Institute, CSIRO and Florey Neuroscience Institutes. Former Governor of Victoria Professor David de Kretser is the Chair of the Governance Committee.

Professor Martin Pera said one of the major assets of the unique multidisciplinary approach of Stem Cells Australia is that it will foster and train the next generation of Australian stem cell scientists, cementing Australia's position in the field.

"This collaboration will not only support excellence in stem cell research to address diseases that are hardest to treat, but will also guide public debate about the important ethical, legal and societal issues associated with stem cell science," he said.
-end-


University of Melbourne

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.