New materials yield record efficiency polymer solar cells

November 10, 2014

Researchers from North Carolina State University and Hong Kong University of Science and Technology have found that temperature-controlled aggregation in a family of new semi-conducting polymers is the key to creating highly efficient organic solar cells that can be mass produced more cheaply. Their findings also open the door to experimentation with different chemical mixtures that comprise the active layers of the cells.

Polymer solar cells are a delicately controlled mixture of a polymer donor and a fullerene acceptor. The cell is created by adding a solvent to the polymer and fullerene until the mixture becomes a liquid, then spreading the liquid thinly onto a surface. As the solvent evaporates, the thin layer solidifies, with the donor material hardening into tiny, highly ordered "clumps" that are connected by other, disordered donor molecules, and the acceptor weaving around them. Currently the most efficient organic solar cells are manufactured using one of only two different fullerenes.

NC State physicist Harald Ade and postdoctoral researcher Wei Ma had previously studied the morphology of solar cells and found that the size scale of the clumps within the donor layer and the aggregation - or interaction between neighboring molecules within the layers - were the main drivers of solar cell efficiency.

In a paper published today in Nature Communications, Ade, Ma and a team of chemists from the Hong Kong University of Science and Technology led by He Yan show that size scale and aggregation within these devices are strongly temperature dependent. They also show that record efficiencies of up to 10.8 percent - as opposed to the currently published 9.8 percent - are achievable with the substitution of numerous fullerenes. Additionally, this performance can be achieved in thick film devices.

"Once we saw how temperature affected the aggregation and morphology of these solar cells, it allowed the chemists more freedom to play with different chemical compositions in the active layer," Ade says. "Yan's team demonstrated 10 percent efficiency with 10different mixtures, and in thicker films. So these solar cells could be compatible with existing methods of mass production, like slot die casting and roll-to-roll processing similar to newspaper printing, rather than the more expensive production methods currently in use that are required for thickness control.

"We hope that these findings will allow others to experiment with different polymer:fullerene blends, further increasing the efficiency of solar cells, decreasing their production costs and leading to a commercially viable alternative source of energy."
-end-
Note to editors: The paper abstract follows.

"Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells"

Authors: Yuhang Liu, Jingbo Zhao, Zhengke Li, Cheng Mu, Huawei Hu, Kui Jiang, Haoran Lin, and He Yan, Hong Kong University of Science and Technology; Harald Ade and Wei Ma, North Carolina State University

Published: Online in Nature Communications

DOI: 10.1038/ncomms6293

Abstract: Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behavior of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility.

North Carolina State University

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.