Novel double dagger anti-cancer agent

November 10, 2015

JERUSALEM (November 10, 2015)--Cancer is a highly complex disease in which the tumor recruits its surrounding tissue, as well as the immune system to support and promote its own growth. This realization explains why tumor therapy has been difficult for physicians. Researchers now realize that not only does the tumor need to be targeted, but also its microenvironment and the immune system, which is subverted by the tumor to support it.

Two studies in the October 2015 print journal, Ocogene, focus on new potential drug-treatment research through a careful study of, and link between, colorectal cancer and melanoma.

Long-time cancer researcher Alexander Levitzki, Wolfson Family Professor Emeritus of Biochemistry at the Hebrew University of Jerusalem, and his senior colleagues, Efrat Flashner-Abramson and Dr. Hadas Reuveni, and other colleagues, describe a double-edged molecule known as NT157 and its action against metastatic human melanoma. In an accompanying article in the same journal, Prof. Michael Karin, a highly acclaimed scientist from the University of California, San Diego, in collaboration with Prof. Levitzki's laboratory, shows the dramatic therapeutic effects of NT157 on colon cancer in a mouse model, which faithfully mimics the human disease.

This unique family of compounds inhibits the action of proteins within the tumor itself, the action of these two cancer-driving proteins in the cancer-supportive microenvironment, as well as the action of "pro-tumor" immune cells, according to Prof. Levitzki. These molecules target two different proteins, comprised of a completely different mechanism of action.

A family of small organic molecules, which fulfills these aims, was developed by the Hebrew University's Alexander Silberman Institute of Life Sciences, in collaboration with the oncological pharmaceutical company, TyrNovo, which licensed NT157 from the Yissum Research Development Company of the Hebrew University of Jerusalem. In his five decades of cancer research, Prof. Levitzki has been the recipient of many international awards, including the Wolf Prize for Medicine.

As part of the NT157 research, the mechanism of these molecules was deciphered by Flashner-Abramson as part of her Ph.D. thesis in the Levitzki laboratory, and by Dr. Reuveni, CEO of TyrNovo (and previously NovoTyr Therapeutics Ltd.). These molecules target two different proteins, comprising of a completely different mechanism of action.

This action was highly unexpected and unforeseen.

Dr. Elza Sanchez-Lopez, from UC San Diego Prof. Karin's lab, conclusively shows that due to the dual targeting feature of NT157, both the tumor and conducive microenvironment became suppressed; a highly effective activity against colon cancer.

"The understanding that cancer is a manifestation of signal transduction gone awry has led to the development of 'targeted therapy' or 'signal transduction therapy,' aimed at cancer-driving proteins," according to the paper, formally titled "Targeting melanoma with NT157 by blocking Stat3 and IGF1R signaling." The link to the paper from Ocogene: http://www.ncbi.nlm.nih.gov/pubmed/26119932

Signal transducer and activator of transcription 3 (Stat 3) is a protein that has attracted much interest as a target for anti-cancer drugs. Stat 3 is a member of a family of seven latent cytoplasmic proteins (organisms such as bacteria, which lack a cell nucleus) and that function as key mediators of cytokine (small proteins) and growth factor signaling.

In the second paper, titled "Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling," researchers looked at the tumor microenvironment (TME). TME exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility (capability of movement), and invasion. The link to the paper from Ocogene: http://www.ncbi.nlm.nih.gov/pubmed/26364612

Colorectal cancer (CRC) is the third most commonly diagnosed cancer, with more than 1.2 million cases each year in the United States. While improved early detection and patient stratification (categorization), results in a significant reduction of mortality, most improvement has been limited to early stage CRC. In patients with advanced stages of the disease, morbidity and mortality remain high.

Tumor development is highly dependent on intricate interactions between multiple cell-types, in addition to malignant epithelial (membranous tissue covering internal organs and other internal surfaces of the body) cells that harbor oncogenic mutations. As in the case of melanoma, anti-cancer drugs for CRC are frequently ineffective against cancer-cells that are therapeutic target which concomitantly affect the malignant behavior of cancer cells and the supportive function of the TME is of particular importance.

Therapies that target TME components in addition to cancer cells should have strong anti-tumor activity.

A prospective study of a cohort of 210 CRS patients shows that tumor size and depth of invasion significantly correlate with IGF-1 and IGF-1R, an insulin-like growth deficiency.

Specific signal transduction inhibitors, a category of anti-cancer drugs that inhibit the enzymes essential to the growth and survival of cancer cells while causing little or no damage to non-cancer cells, are rarely effective in treating the disease. In most cases, tumors possess primary drug resistance due to their inherent heterogeneity - one of the underlying reasons that make treatment of cancer difficult. Resistance to drugs is due to genomic instability and acquisition.

"Our results strongly support further clinical evaluation of NT157 and similar compounds in sporadic human CRC," according to the paper's authors. Hebrew University of Jerusalem is Israel's leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit http://new.huji.ac.il/en
-end-


The Hebrew University of Jerusalem

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.