Pitt study: Chronic arsenic exposure can impair ability of muscle to heal after injury

November 10, 2015

PITTSBURGH, Nov. 10, 2015 - Chronic exposure to arsenic can lead to stem cell dysfunction that impairs muscle healing and regeneration, according to an animal study conducted by researchers at the University of Pittsburgh's School of Medicine and Graduate School of Public Health. In a report published online in STEM CELLS, they noted that inhibiting a certain protein in an inflammatory pathway can reverse the harmful effects and that environmental exposures might explain why some people don't recover easily after injury or surgery.

More than 140 million people worldwide and 4 million Americans chronically ingest arsenic in their drinking water, said senior investigator Fabrisia Ambrosio, Ph.D., M.P.T., assistant professor of physical medicine and rehabilitation at Pitt and the McGowan Institute for Regenerative Medicine. The 21st most abundant metal in the Earth's crust, arsenic is naturally present in soil and bedrock-walled wells and has no odor, color or taste.

"Whereas previous research has examined the impact of arsenic and other environmental contaminants on stem cell function critical for fetal and child development, there is very little information about how such exposures may affect stem cells and their function in adulthood," Dr. Ambrosio said. "We wanted to see if environmentally relevant levels of arsenic impair the ability of skeletal muscle to properly repair after injury, and we found out that it does."

In the study, mice drank water for five weeks, or about two human years, with the equivalent of 10 times the arsenic level considered safe for humans by federal standards. Similar levels are seen in about 8 to 10 percent of wells, said co-investigator Aaron Barchowsky, Ph.D., professor of environmental and occupational health at Pitt Public Health. Then the researchers injured muscle in the exposed mice and compared the outcome to those of mice that weren't exposed to arsenic.

They found a significant decrease in the ability of the muscle in arsenic-exposed mice to regenerate after the injury, and a consequent impairment of muscle function. They examined muscle tissue after taking away all the cells, leaving only what's called the extracellular matrix, and found it had abnormally remodeled producing structural deficits.

The researchers seeded the arsenic-exposed extracellular matrix with human muscle stem cells to see if healthy muscle would reform.

"We found that this pathogenic matrix impaired the ability of our stem cells to form new muscle fibers," Dr. Ambrosio said. "This may contribute to an impaired healing response after injury."

They learned that arsenic caused heightened biochemical signals from a protein complex called NF kappa B, which is involved in matrix remodeling and tissue repair.

"A striking finding is that if we blocked the activation of the NF kappa B program, we saw the arsenic-exposed muscle recovered just fine," Dr. Barchowsky said. "We'd like to go deeper into this in our next steps to explore whether we can reverse arsenic's impact on a person who has been chronically exposed to it."

Dr. Ambrosio, a physical therapist, noted that some patients have a harder time recovering from surgery or injury.

"From a rehabilitation perspective, it could be important to pay more attention to these environmental factors that may be influencing the ability of tissue to regenerate," she said. "It would be wonderful if we could identify people who may be predisposed to a diminished healing capacity and then intervene accordingly so they are able to better recover from injuries."
Co-authors include Changqing Zhang, Ph.D., Ricardo Ferrari M.S., P.T., Kevin Beezhold, Ph.D., Kristen Stearns-Reider, Ph.D., M.S.P.T., Antonio D'Amore, Ph.D., Martin Haschak and Donna Stolz, Ph.D., all of the University of Pittsburgh; and Paul D. Robbins, Ph.D., of The Scripps Research Institute.

The project was funded by National Institutes of Health National Institute on Aging grants AG039477 and AG43376, and National Institute of Environmental Health Sciences grants ES023696, ES013781 and ES022134; the Pennsylvania Department of Health; and the Pittsburgh Claude D. Pepper Older Americans Independence Center.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.


Contact: Anita Srikameswaran
Phone: 412-578-9193
E-mail: SrikamAV@upmc.edu

Contact: Allison Hydzik
Phone: 412-647-9975
E-mail: HydzikAM@upmc.edu

University of Pittsburgh Schools of the Health Sciences

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.