Nav: Home

Woodland destruction by beetles is facilitated by their unique genetics

November 10, 2016

The feeding habits responsible for the ecological success of the Asian long-horned beetle have been pinned down to their unique genes, according to new research published by the open access journal Genome Biology.

By comparing the genome of the Asian long-horned beetle with 14 other insects, the researchers were able to identify a suite of genes, some unique to this species, that aid the digestion of woody plant material and are likely responsible for the beetles ability to thrive in woodland regions all over the world. The Asian long-horned beetle is a globally invasive species capable of inflicting severe damage on many economically important trees. The potential economic impact in the United States, if uncontrolled, has been estimated at $889 billion.

Dr Duane McKenna, co-lead author from the University of Memphis, said: "Our detailed genomic analysis reveals that the Asian long-horned beetle has over 1,000 genes that aren't present in any other arthropod. We identified a total of 86 genes for enzymes called glycoside hydrolases - more than have been found in any other insect. These enzymes enable the beetle to digest woody plant material and detoxify plant chemicals and so indicate a genetic reason for their apparent success in feeding on trees worldwide".

Wood is a poor source of nutrients so any organism capable of surviving on a diet of woody plant material must have evolved unique characteristics that allow effective digestion and maximum extraction of energy.

Dr McKenna added: "The arsenal of glycoside hydrolase enzymes that the Asian long-horned beetle has allows it to degrade all of the main polysaccharides present in plant cell walls, releasing the sugars it needs for energy. Importantly, the range of enzymes this beetle has is highly diverse, which we believe allows it to breakdown many different molecules present across a wide range of woody plants."

The Asian long-horned beetle completes its entire development living and feeding within the wood of trees. In its earliest stage the larvae are specialized wood-borers, feeding on plant tissue under the bark. Later in its life cycle the larvae tunnel deeper into the wood where they continue to feed throughout their development. Adult beetles emerge from the tree and spend their relatively short life-span feeding on external parts of the tree.

Dr Stephen Richards, co-lead author from Baylor College of Medicine Human Genome Sequencing Center in Texas, United States, said: "In this case, when we fed beetle larvae on wood material from sugar maple trees we found that the activity of the glycoside hydrolase genes was increased, something not seen in larvae fed on an artificial diet. This experiment, along with our complementary analysis of the beetle genome, also revealed the specific set of genes, called CYP450 genes, which are involved in the detoxification of compounds encountered by the beetle when feeding on plant tissues."

The Asian long-horned beetle, also known as Anoplophora glabripennis, belongs to the longhorn beetle family, which contains over 35,000 different species, making it the most diverse group of wood-feeding animals on Earth.

According to the researchers this study has established a genomic basis for the invasiveness of the Asian long-horned beetle as well as the evolutionary success of beetles that feed on woody plants. Additionally, the identification of genes linked to key digestive and detoxification processes will ultimately provide novel tools for management of the Asian long-horned beetle and other invasive wood-boring pests.

Dr Richards added: "This publically available genome is part of a larger group as a pilot for the i5K initiative to sequence 1000's of insects. We hope that in the long term this foundation information about how any species works can be made available to anyone interested in biology, from researchers addressing specific questions to high-school students and hobbyist entomologists at home."
-end-
Media Contact
Lam
Press Manger
BioMed Central
T: +44 (0)20 3192 2722
M: +44 (0)75 4079 9187
E: matthew.lam@biomedcentral.com

Notes to editor:

1. Images of the Asian long-horned beetle are available here: https://goo.gl/RQpj4W
Please credit image 1, 2 and 3 to David Lance.
Please credit image 4 to Yunke Wu.

2. Research article: Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface
Stephen Richards, Duane McKenna et al.
Genome Biology 2016

DOI: 10.1186/s13059-016-1088-8

During embargo period please contact Matthew Lam for a copy of the article.

After the embargo lifts, the article will be available at the journal website here: https://goo.gl/wlFdmH Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

3. Genome Biology publishes outstanding research in all areas of biology and biomedicine studied from a genomic and post-genomic perspective. The current impact factor is 11.313 and the journal is ranked 4th among research journals in the Genetics and Heredity category by Thomson Reuters. Genome Biology is the highest ranked Open Access journal in the category.

4. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Nature, a major new force in scientific, scholarly, professional and educational publishing, created in May 2015 through the combination of Nature Publishing Group, Palgrave Macmillan, Macmillan Education and Springer Science+Business Media. http://www.biomedcentral.com

BioMed Central

Related Genome Articles:

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.