Nav: Home

Woodland destruction by beetles is facilitated by their unique genetics

November 10, 2016

The feeding habits responsible for the ecological success of the Asian long-horned beetle have been pinned down to their unique genes, according to new research published by the open access journal Genome Biology.

By comparing the genome of the Asian long-horned beetle with 14 other insects, the researchers were able to identify a suite of genes, some unique to this species, that aid the digestion of woody plant material and are likely responsible for the beetles ability to thrive in woodland regions all over the world. The Asian long-horned beetle is a globally invasive species capable of inflicting severe damage on many economically important trees. The potential economic impact in the United States, if uncontrolled, has been estimated at $889 billion.

Dr Duane McKenna, co-lead author from the University of Memphis, said: "Our detailed genomic analysis reveals that the Asian long-horned beetle has over 1,000 genes that aren't present in any other arthropod. We identified a total of 86 genes for enzymes called glycoside hydrolases - more than have been found in any other insect. These enzymes enable the beetle to digest woody plant material and detoxify plant chemicals and so indicate a genetic reason for their apparent success in feeding on trees worldwide".

Wood is a poor source of nutrients so any organism capable of surviving on a diet of woody plant material must have evolved unique characteristics that allow effective digestion and maximum extraction of energy.

Dr McKenna added: "The arsenal of glycoside hydrolase enzymes that the Asian long-horned beetle has allows it to degrade all of the main polysaccharides present in plant cell walls, releasing the sugars it needs for energy. Importantly, the range of enzymes this beetle has is highly diverse, which we believe allows it to breakdown many different molecules present across a wide range of woody plants."

The Asian long-horned beetle completes its entire development living and feeding within the wood of trees. In its earliest stage the larvae are specialized wood-borers, feeding on plant tissue under the bark. Later in its life cycle the larvae tunnel deeper into the wood where they continue to feed throughout their development. Adult beetles emerge from the tree and spend their relatively short life-span feeding on external parts of the tree.

Dr Stephen Richards, co-lead author from Baylor College of Medicine Human Genome Sequencing Center in Texas, United States, said: "In this case, when we fed beetle larvae on wood material from sugar maple trees we found that the activity of the glycoside hydrolase genes was increased, something not seen in larvae fed on an artificial diet. This experiment, along with our complementary analysis of the beetle genome, also revealed the specific set of genes, called CYP450 genes, which are involved in the detoxification of compounds encountered by the beetle when feeding on plant tissues."

The Asian long-horned beetle, also known as Anoplophora glabripennis, belongs to the longhorn beetle family, which contains over 35,000 different species, making it the most diverse group of wood-feeding animals on Earth.

According to the researchers this study has established a genomic basis for the invasiveness of the Asian long-horned beetle as well as the evolutionary success of beetles that feed on woody plants. Additionally, the identification of genes linked to key digestive and detoxification processes will ultimately provide novel tools for management of the Asian long-horned beetle and other invasive wood-boring pests.

Dr Richards added: "This publically available genome is part of a larger group as a pilot for the i5K initiative to sequence 1000's of insects. We hope that in the long term this foundation information about how any species works can be made available to anyone interested in biology, from researchers addressing specific questions to high-school students and hobbyist entomologists at home."
-end-
Media Contact
Lam
Press Manger
BioMed Central
T: +44 (0)20 3192 2722
M: +44 (0)75 4079 9187
E: matthew.lam@biomedcentral.com

Notes to editor:

1. Images of the Asian long-horned beetle are available here: https://goo.gl/RQpj4W
Please credit image 1, 2 and 3 to David Lance.
Please credit image 4 to Yunke Wu.

2. Research article: Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface
Stephen Richards, Duane McKenna et al.
Genome Biology 2016

DOI: 10.1186/s13059-016-1088-8

During embargo period please contact Matthew Lam for a copy of the article.

After the embargo lifts, the article will be available at the journal website here: https://goo.gl/wlFdmH Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

3. Genome Biology publishes outstanding research in all areas of biology and biomedicine studied from a genomic and post-genomic perspective. The current impact factor is 11.313 and the journal is ranked 4th among research journals in the Genetics and Heredity category by Thomson Reuters. Genome Biology is the highest ranked Open Access journal in the category.

4. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Nature, a major new force in scientific, scholarly, professional and educational publishing, created in May 2015 through the combination of Nature Publishing Group, Palgrave Macmillan, Macmillan Education and Springer Science+Business Media. http://www.biomedcentral.com

BioMed Central

Related Genome Articles:

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
Decoding the Axolotl genome
The sequencing of the largest genome to date lays the foundation for novel insights into tissue regeneration.
The Down's syndrome 'super genome'
Only 20 percent of foetuses with trisomy 21 reach full term.
More Genome News and Genome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.