Nav: Home

Researchers use fruit flies to understand how body responds to harmful, cold stimuli

November 10, 2016

ATLANTA-The tiny fruit fly can help humans investigate the genetic and neural bases of detecting painful or harmful cold stimuli and offer intriguing, potential implications for human health, according to a new study.

A team of researchers led by Dr. Daniel N. Cox, associate professor of neuroscience at Georgia State University, has discovered that fruit flies have cold-sensing neurons that when activated drive specific, aversive behaviors to damaging cold, which requires the function of evolutionarily conserved ion channels known as Transient Receptor Potential (TRP) channels.

In the journal Current Biology, the researchers establish the fruit fly, Drosophila melanogaster, as a powerful genetic and behavioral model for unraveling questions about the cellular and molecular bases of damaging cold perception, which have not been well understood.

The study explores the concept of nociception, the peripheral and central nervous systems' perception of painful or potentially tissue damaging stimuli, which is generated by activating sensory nerve cells called nociceptors. This evolutionarily conserved process is critically important for survival.

Nociception, coupled with pain sensation, alerts an organism to possible environmental dangers and allows it to execute behavioral responses to protect against incipient damage. Acute and chronic pain can manifest as altered nociception in neuropathic pain states.

The study found that one of the implicated TRP channel genes called Pkd2 has been causally linked to autosomal dominant polycystic kidney disease (PKD), the most common monogenic disease in humans. Pkd2 ion channels appear to function as cold sensors and misexpression of Pkd2 can confer cold sensitivity to normally insensitive neurons. While it is not yet known if PKD patients have cold nociception defects, these new findings suggest this merits further investigation as a potential non-invasive diagnostic.

These same cold-sensing neurons also function as mechanosensors for touch, revealing that they, as well as the TRP channels identified in this study, are multimodal and raising the question of how neurons and ion channels distinguish between harmless and harmful stimuli to drive specific behavioral responses. Using sophisticated optical assays of neural activation by touch versus cold stimuli, the researchers demonstrate that these sensory neurons have different activation thresholds, with touch having a low threshold and cold having a high threshold, that ultimately determine the appropriate behavioral response.

"This new model sets the stage for uncovering evolutionarily conserved molecular control of nociception," said Cox. "It also provides a powerful genetic platform for unraveling the neural circuitry and molecular mechanisms that integrate multimodal sensory input to produce specific behaviors in response to diverse environmental stimuli."

The research team included Kevin Armengol, Atit A. Patel, Nathaniel J. Himmel, Luis Sullivan, Dr. Srividya C. Iyer and Dr. Eswar P.R. Iyer of the Cox Lab at Georgia State's Neuroscience Institute and Center for Behavioral Neuroscience, and collaborators Heather N. Turner and Michael J. Galko from MD Anderson Cancer Center.

The next steps will be to dissect the neural circuitry, additional molecular players and synaptic mechanisms that modulate cold nociception and multimodal sensory processing.
-end-
For more information on Dr. Daniel N. Cox and the research being conducted in his laboratory, visit http://neuroscience.gsu.edu/profile/daniel-cox/.

For more information on the Center for Behavioral Neuroscience, visit http://www.cbn-atl.org.

Georgia State University

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.