Nav: Home

New technique could increase success of infertility treatment

November 10, 2016

PORTLAND, Ore, and LA JOLLA, Calif. - Families struggling with infertility or a genetic predisposition for debilitating mitochondrial diseases may someday benefit from a new breakthrough led by scientists at OHSU and the Salk Institute for Biological Studies.

In a study to be published Thursday, Nov. 10 in the journal Cell Stem Cell, researchers discovered it's possible to regenerate human eggs or oocytes - the cellular beginning of an embryo - by making use of genetic material that normally goes to waste.

This DNA comes from small cells called polar bodies that form off of eggs and contain the same genetic material as in a woman's egg nucleus. Until now, polar bodies had never been shown to be potentially useful for generating functional human eggs for fertility treatments. In the study, scientists successfully transplanted a polar body from a woman's developing oocyte into the cytoplasm of a donor oocyte stripped of its nucleus.

Though the technique could be years away from progressing to clinical trials, the advancement eventually could be significant for women of advanced maternal age. One recent survey showed that the average age of first-time mothers increased in the United States from 21.4 years in 1970 to 25.0 years in 2006.

"We know that fertility declines as women get older," said Shoukhrat Mitalipov, Ph.D., co- senior author and director of the OHSU Center for Embryonic Cell and Gene Therapy. "This is potentially a way to double the number of eggs we're able to get from one session of in vitro fertilization."

"Although it was only possible to examine a limited number of lines, from the point of view of epigenomic profiles, the quality of polar body-derived embryonic cells looks quite promising," says co-senior author Joseph Ecker, Ph.D., Salk professor and director of the Genomic Analysis Laboratory.

By rescuing polar bodies that would otherwise simply bud off the developing oocyte, researchers were able to form additional oocytes genetically related to the mother through nuclear transfer. When fertilized with sperm, the new oocytes developed into viable embryos. None of the embryos were implanted to carry out an actual pregnancy.

"Normally, polar bodies disintegrate and disappear during egg development," said co-first author Hong Ma, M.D., Ph.D., with OHSU's Center for Embryonic Cell and Gene Therapy. "We were able to recycle them. We hope that by doing this, we can double the number of patient eggs available for in vitro fertilization."

"This is the first investigation into the surprising viability of human polar bodies and it reveals a new source of previously discarded genetic material to study," says Ryan O'Neil, co-first author and Salk researcher.

In addition to potentially benefitting women of advanced maternal age, the technique may present another opportunity to help women known to have mutations in their mitochondria, the tiny powerhouses inside nearly every cell of the body. Mutations in mitochondria can result in debilitating forms of disease in children.

"This new technique maximizes the chances of families having a child through in vitro fertilization free of genetic mutations," Mitalipov said.

Mitalipov previously developed a mitochondrial replacement therapy involving the implantation of patient's egg nucleus - or spindle - into a healthy donated egg stripped of its original nucleus. Mitalipov also has successfully demonstrated the spindle-transfer technique in the healthy offspring of rhesus macaque monkeys.
-end-
In addition to Mitalipov, Ecker, Ma and O'Neil, authors of the study include Ryan C. O'Neil and Yupeng He, of the Genomic Analysis Laboratory at the Salk Institute and the Bioinformatics Program at the University of California and San Diego; Joseph R. Ecker, Ph.D., of the Salk Institute and Howard Hughes Medical Institute; Nuria Marti Gutierrez, Eunju Kang, Yeonmi Lee, Tomonari Hayama, M.D., Ph.D., Amy Koski, Rebecca Tippner-Hedges, Riffat Ahmed, Crystal Van Dyken, Ying Li, and Don P. Wolf, Ph.D., of the OHSU Center for Embryonic Cell and Gene Therapy; Manoj Hariharan, Ph.D., Zhuzhu Z. Zhang, Ph.D., Joseph Nery and Rosa Castanon, of the Salk Institute; Susan Olson, Ph.D., of the OHSU Department of Molecular and Medical Genetics; David Battaglia, Ph.D., H.C.L.D., David M. Lee, M.D., Diana H. Wu, M.D., and Paula Amato, M.D., of the OHSU Department of Obstetrics and Gynecology; and Cengiz Cinnioglu, Ph.D., and Refik Kayali, Ph.D., of IviGen Los Angeles.

Oregon Health & Science University

Related Gene Therapy Articles:

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.
Using gene therapy to treat chronic traumatic encephalopathy
A new study shows the feasibility of using gene therapy to treat the progressive neurodegenerative disorder chronic traumatic encephalopathy (CTE).
New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.
Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.
Non-viral gene therapy to speed up cancer research
A new treatment method promises to speed up gene therapy research and could bring new, patient friendly cancer treatments to market faster.
Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.
Gene therapy for blood disorders
Delivering gene-regulating material to cells that live deep in our bone marrow and direct the formation of blood cells.
Realizing the potential of gene therapy for neurological disorders
Promising findings from preclinical animal studies show the potential of gene therapy for treating incurable neurological disorders.
Gene therapy vectors carrying the telomerase gene do not increase the risk of cancer
Researchers from the Spanish National Cancer Research Centre (CNIO) have shown in a new study that the gene therapy with telomerase that they have developed, and which has proven to be effective in mice against diseases caused by excessive telomere shortening and ageing, does not cause cancer or increase the risk of developing it, even in a cancer-prone setting.
Study advances gene therapy for glaucoma
In a study published today in the scientific journal Investigative Ophthalmology and Visual Science, Kaufman and Curtis Brandt, a fellow professor of ophthalmology and visual sciences at UW-Madison, showed an improved tactic for delivering new genes into the eye's fluid drain, called the trabecular meshwork.
More Gene Therapy News and Gene Therapy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.