Nav: Home

Cosmic whistle packs a surprisingly energetic punch

November 10, 2016

Penn State University astronomers have discovered that the mysterious "cosmic whistles" known as fast radio bursts can pack a serious punch, in some cases releasing a billion times more energy in gamma-rays than they do in radio waves and rivaling the stellar cataclysms known as supernovae in their explosive power. The discovery, the first-ever finding of non-radio emission from any fast radio burst, drastically raises the stakes for models of fast radio bursts and is expected to further energize efforts by astronomers to chase down and identify long-lived counterparts to fast radio bursts using X-ray, optical, and radio telescopes.

Fast radio bursts, which astronomers refer to as FRBs, were first discovered in 2007, and in the years since radio astronomers have detected a few dozen of these events. Although they last mere milliseconds at any single frequency, their great distances from Earth -- and large quantities of intervening plasma -- delay their arrival at lower frequencies, spreading the signal out over a second or more and yielding a distinctive downward-swooping "whistle" across the typical radio receiver band.

"This discovery revolutionizes our picture of FRBs, some of which apparently manifest as both a whistle and a bang," said coauthor Derek Fox, a Penn State professor of astronomy and astrophysics. The radio whistle can be detected by ground-based radio telescopes, while the gamma-ray bang can be picked up by high-energy satellites like NASA's Swift mission. "Rate and distance estimates for FRBs suggest that, whatever they are, they are a relatively common phenomenon, occurring somewhere in the universe more than 2,000 times a day."

Efforts to identify FRB counterparts began soon after their discovery but have all come up empty until now. In a paper published November 11 in Astrophysical Journal Letters the Penn State team, led by physics graduate student James DeLaunay, reports bright gamma-ray emission from the fast radio burst FRB 131104, named after the date it occurred, November 4, 2013. "I started this search for FRB counterparts without expecting to find anything," said DeLaunay. "This burst was the first that even had useful data to analyze. When I saw that it showed a possible gamma-ray counterpart, I couldn't believe my luck!"

Discovery of the gamma-ray "bang" from FRB 131104, the first non-radio counterpart to any FRB, was made possible by NASA's Earth-orbiting Swift satellite, which was observing the exact part of the sky where FRB 131104 occurred as the burst was detected by the Parkes Observatory radio telescope in Parkes, Australia. "Swift is always watching the sky for bursts of X-rays and gamma-rays," said Neil Gehrels, the mission's Principal Investigator and chief of the Astroparticle Physics Laboratory at NASA's Goddard Space Flight Center. "What a delight it was to catch this flash from one of the mysterious fast radio bursts."

"Although theorists had anticipated that FRBs might be accompanied by gamma rays, the gamma-ray emission we see from FRB 131104 is surprisingly long-lasting and bright," Fox said. The duration of the gamma-ray emission, at two to six minutes, is many times the millisecond duration of the radio emission. And the gamma-ray emission from FRB 131104 outshines its radio emissions by more than a billion times, dramatically raising estimates of the burst's energy requirements and suggesting severe consequences for the burst's surroundings and host galaxy.

Two common models for gamma-ray emission from FRBs exist: one invoking magnetic flare events from magnetars -- highly magnetized neutron stars that are the dense remnants of collapsed stars -- and another invoking the catastrophic merger of two neutron stars, colliding to form a black hole. According to coauthor Kohta Murase, a Penn State professor and theorist, "The energy release we see is challenging for the magnetar model unless the burst is relatively nearby. The long timescale of the gamma-ray emission, while unexpected in both models, might be possible in a merger event if we observe the merger from the side, in an off-axis scenario."

"In fact, the energy and timescale of the gamma-ray emission is a better match to some types of supernovae, or to some of the supermassive black hole accretion events that Swift has seen," Fox said. "The problem is that no existing models predict that we would see an FRB in these cases."

The bright gamma-ray emission from FRB 131104 suggests that the burst, and others like it, might be accompanied by long-lived X-ray, optical, or radio emissions. Such counterparts are dependably seen in the wake of comparably energetic cosmic explosions, including both stellar-scale cataclysms -- supernovae, magnetar flares, and gamma-ray bursts -- and episodic or continuous accretion activity of the supermassive black holes that commonly lurk in the centers of galaxies.

In fact, Swift X-ray and optical observations were carried out two days after FRB 131104, thanks to prompt analysis by radio astronomers (who were not aware of the gamma-ray counterpart) and a nimble response from the Swift mission operations team, headquartered at Penn State. In spite of this relatively well-coordinated response, no long-lived X-ray, ultraviolet, or optical counterpart was seen.

The authors hope to participate in future campaigns aimed at discovering more FRB counterparts, and in this way, finally revealing the sources responsible for these ubiquitous and mysterious events. "Ideally, these campaigns would begin soon after the burst and would continue for several weeks afterward to make sure nothing gets missed. Maybe we'll get even luckier next time," DeLaunay said.
-end-
The research effort received financial support from Penn State's Office of the Senior Vice President for Research, Penn State's Eberly College of Science, and the Penn State Institute for Gravitation and the Cosmos. Members of the research team also received support from the U.S. National Science Foundation and NASA.

CONTACT

Derek Fox
dbf11@psu.edu
1-814-863-4989

Neil Gehrels:
neil.gehrels@nasa.gov
1-301-526-9288

Barbara Kennedy (PIO)
science@psu.edu
1-814-863-4682

ARCHIVE

This information will be archived at http://science.psu.edu/news-and-events/2016-news/Fox11-2016

Penn State

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.