Nav: Home

DNA-based Zika vaccine showed protection from infection, brain damage and death

November 10, 2016

PHILADELPHIA--(Nov. 10, 2016)-- As the global spread of the Zika virus continues, efforts are underway to halt the disease's transmission. While no licensed therapies or vaccines to protect against the Zika virus are currently available, new research published in the journal npj Vaccines demonstrates how a synthetic DNA vaccine approach successfully protected against infection, brain damage and death caused by the mosquito-borne Zika virus in vivo.

In this preclinical study, 100 percent of the animal models were protected from Zika after vaccination followed by a challenge with the Zika virus. In addition, they were protected from degeneration in the cerebral cortex and hippocampal areas of the brain, while the other cohort showed degeneration of the brain after Zika infection.

"Our results support the critical importance of immune responses for both preventing infection as well as ameliorating disease caused by the Zika virus," said lead researcher David B. Weiner, Ph.D., Executive Vice President and Director of the Vaccine Center at The Wistar Institute and the W.W. Smith Charitable Trust Professor in Cancer Research at Wistar. "As the threat of Zika continues, these results provide insight into a new aspect of the possibly protective ability of such a vaccine as a preventative approach for Zika infection."

This study is the first of its kind to analyze a vaccine in an animal model that is susceptible to the disease, providing information regarding the protective impact of the immune response in susceptible individuals. Prior studies of the Zika virus have tested vaccines in animal models that are naturally resistant to Zika. This study extends these prior research studies in an important manner.

J. Joseph Kim, Ph.D., MBA, President and CEO of Inovio Pharmaceuticals, Inc., added, "Working with Wistar, we have clearly demonstrated the power and the speed of our product development platform when we and our collaborators moved our Zika vaccine from the bench to human studies in less than six months, taking advantage of our platform to help in this outbreak situation.

In this latest study, Weiner and colleagues demonstrated how a synthetic DNA vaccine expressed specific antigens for Zika in vivo. They observed that this novel vaccine generated robust antigen-specific antibody and T cell responses that neutralized the virus in preclinical animal models. Moreover, they found that the vaccine provided protection against the disease and death in animal models while also being neuroprotective, meaning that the disease was unable to spread to the brain. This is especially important given the risk that infants born with the disease have of developing microcephaly, a birth defect resulting in an abnormally small head and that may prevent the brain from developing properly.

One important aspect of Zika and many other mosquito-borne diseases is that not everyone infected with the virus will actually become ill as a result. With Zika, only about 20 to 25 percent of individuals with the virus are actually impacted by the disease, according to previous studies from the U.S. Centers for Disease Control (CDC). However, there is no way to know for certain who will be at risk for illness due to the virus, which is why it was crucial for this study to examine how a vaccine would operate in an infected, symptomatic host.

This Zika vaccine is being developed in collaboration between Inovio, The Wistar Institute, and GeneOne Life Science Inc. and is currently being tested in two human clinical studies. Before the end of 2016, Inovio expects to report phase I data from the first 40-subject study being conducted in Miami, Philadelphia and Quebec City. In August, the companies also initiated a second study in 160 subjects in Puerto Rico. The CDC estimates that Zika will infect more than 25 percent of the Puerto Rican population by the end of the year, creating the potential for this study's placebo-controlled design to provide exploratory signals of vaccine efficacy in 2017.

A total of nearly 4,000 cases of Zika infection have been reported in the United States alone, according to the CDC. While most of these are travel-associated cases, more than 100 cases of Zika infection originating within the United States have been reported. Globally, more than 60 countries have reported mosquito-borne transmission of the disease.
-end-
This work was supported by the National Institutes of Health and the Intramural Research Program of the National Institute of Allergy and Infectious Diseases grant NIH R01 AI092843. Weiner received funding from Inovio Pharmaceuticals Inc. and Gene One Life Science Inc.

Co-authors of this study from The Wistar Institute include Karuppiah Muthumani, Sangya Agarwal, Sagar Kudchodkar, Emma Reuschel, Hyeree Choi, Elizabeth Duperret, Chistopher Chung, and Yinho Kim. Other co-authors of this study include Bryan Griffin, Stephanie Booth, Trina Racine, and Gary Kobinger from the Public Health Agency of Canada; Kim Kraynyak, Jian Yan, Matthew Morrow, Jingjing Jiang, Brian Lee, Stephanie Ramos, Kate Broderick, Charles Reed, Niranjan Y. Sardesai, and J. Joseph Kim from Inovio Pharmaceuticals, Inc.; Amelia Anne Keaton from the Children's Hospital of Philadelphia; Kenneth Ugen from the University of South Florida Morsani College of Medicine; and Young Park and Joel Maslow from GeneOne Life Science Inc.

About The Wistar Institute

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

The Wistar Institute

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab