Plant-species hotspot maps identify priority conservation areas of tropical Africa

November 10, 2016

Identifying critical areas for global biodiversity is an important step when prioritising areas for conservation, and generating biodiversity hotspot maps based on global species ranges - at a scale usable by local management - has been a long-term ambition in the field.

New research led by the University of Oxford has realised this ambition for tropical Africa, making use of 3.1 million global distribution records of more than 40,000 African plant species to map the areas that are home to the world's rarest plants.

The study, which makes use of a scalable concept defined as 'bioquality', is published in the journal Current Biology.

Study author Cicely Marshall, a doctoral candidate in Oxford's Department of Plant Sciences, said: 'This is an important framework for African conservationists, botanists, researchers and policy makers, offering a quantitative and replicable approach for measuring the irreplaceability of particular local areas for global biodiversity conservation, and for comparing those areas within their global and regional context.'

The researchers first summarised the global range of all plant species in tropical Africa into one of four standardised 'Star' categories of global rarity. Black Star species are the world's globally rarest plant species, known from only a few localities worldwide. By contrast, Green Star species are globally widespread, while Gold and Blue Star species are intermediate.

The study used these Star ratings in combination with species distribution data to measure bioquality at different scales across the continent, using a scale-independent index. High bioquality implies a high proportion of globally rare plants in an area - species that stand to be lost from the global pool. The bioquality map reveals the most significant areas for global plant biodiversity continentally, but also reveals considerable variation within these areas at a more local scale.

The researchers found that the Horn of Africa region is among the 'hottest' for plant biodiversity, as are the south east Democratic Republic of Congo, the Cameroon and Gabon coastlines, and the Karoo Namib floristic region on the Angolan coast.

Cicely Marshall said: 'Our map for tropical Africa displays not only the most important regions from the point of view of biodiversity conservation, it shows that there is considerable variation within hotspot regions - some local patches of vegetation are much hotter than others, and at local scales there is usually scope to alter development plans to minimise biodiversity loss.

'Although published botanic data allow broad patterns of plant biodiversity to be understood, as shown in the continental bioquality map, the detail of local plant distributions is still very much absent for most of Africa. It remains as necessary as ever to collect and identify plants to make informed management decisions at the local scale, particularly as a prelude to local development. Our framework allows any new records and flora surveys, at any scale, to be assessed for bioquality and incorporated into the continental map, building into an ever more detailed picture.'

Dr William Hawthorne of Oxford's Department of Plant Sciences, a co-author of the paper, added: 'Conceptually, bioquality moves us beyond simple measurements of the numbers of species in a place and allows species to be valued unequally in conservation assessments. For example, the presence of alien or invasive species brings bioquality scores down, rather than adding a species to the total. Furthermore, the standardisation of the bioquality index allows meaningful comparisons to be made between patches of vegetation in any part of the world - potentially a useful consideration for international agencies when allocating global conservation funding for biodiversity conservation, or when considering where new developments will have least impact on biodiversity.

'Practically, the bioquality method for conservation assessment offers new analytical flexibility at a local scale, allowing practitioners to "zoom in" on areas of general importance to measure the global significance of particular areas for plant biodiversity within precise, local boundaries of interest. It is at this scale at which information is needed, because this is the scale at which decisions impacting plant biodiversity are usually taken. Where, precisely, to position a new protected area? Where to develop infrastructure? How to measure the impact of a new development on biodiversity? How to identify an equivalent area for offset? We now have the framework to answer such questions objectively across tropical Africa.'
-end-


University of Oxford

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.