Winds blowing off a dying star

November 10, 2017

Japan -- Stars like our Sun eject large amounts of gas and dust into space, containing various elements and compounds. Asymptotic giant branch -- AGB -- phase stars, near their end of life, are particularly significant sources of such substances in our galaxy.

Formation of dust around AGB stars has been considered to play an important role in triggering acceleration of stellar wind, but the detailed mechanism of this acceleration has not been well explained.

And there is yet another conundrum. In space, silicon is ten times more abundant than aluminum. However, many oxygen-rich AGB stars are rich in aluminum oxide dust -- the major carrier of aluminum -- but poor in silicate dust -- the carrier of silicon, which has puzzled researchers: why is aluminum oxide dust so abundant around oxygen-rich AGB stars?

In a paper published in Science Advances, a research team led by Aki Takigawa of Kyoto University have utilized the Atacama Large Millimeter/submillimeter Array -- ALMA, as the high spatial-resolution radio interferometer in Chile is known -- to obtain detailed images of gas molecules forming dust surrounding an AGB star.

"Previously, there was a limit to how well we could observe dust forming regions close to stars," explains Takigawa. "Now, thanks to the high spatial resolution of ALMA, we can obtain images of gases in these regions in finer detail. So we pointed ALMA toward an aluminum oxide-rich AGB star, W Hydrae."

Gas molecules aluminum monoxide and silicon monoxide -- AlO and SiO -- eventually form aluminum oxide and silicate dust. The team observed that AlO was distributed within three stellar radii of W Hydrae, which was surprisingly similar to the previously-observed dust distribution.

Meanwhile, SiO was detected beyond five stellar radii, and moreover 70% remained gaseous, without forming into dust.

"These results indicate that as aluminum oxide grows and accumulates near a star, the addition of a small amount of silicate dust may trigger wind acceleration," elaborates Takigawa. "This decreases gas density, suppressing further silicate dust formation."

"This may explain the presence of aluminum-oxide-rich but silicate-poor AGB stars."

These new results shed light not only on the dynamics of gas and dust surrounding stars, but also on the importance of studying both together. The team plans to continue using ALMA to elucidate gas and dust dynamics in the universe.
The paper "Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae" appeared 1 November 2017 in Science Advances, with doi: 10.1126/sciadv.aao2149

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see:

Kyoto University

Related Silicon Articles from Brightsurf:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.

Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.

A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.

Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.

Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.

Read More: Silicon News and Silicon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to