Surrey helps to produce the world's first neutron-rich, radioactive tantalum ions

November 10, 2020

An international team of scientists have unveiled the world's first production of a purified beam of neutron-rich, radioactive tantalum ions. This development could now allow for lab-based experiments on exploding stars helping scientists to answer long-held questions such as "where does gold come from?"

In a paper published in Physical Review Letters, the University of Surrey together with its partners detail how they used a new isotope-separation facility, called KISS, which is developed and operated by the Wako Nuclear Science Centre (WNSC) in the High Energy Accelerator Research Organization (KEK), Japan, to make beams of heavy tantalum isotopes.

The chemical element of tantalum is extremely difficult to vaporise, so the team had to capture radioactive tantalum atoms in high-pressure argon gas, ionising the atoms with precisely tuned lasers. A single isotope of radioactive tantalum could then be selected for detailed investigation.

In the study, the team found that when produced in a metastable state, tantalum-187's nucleus fleetingly rotated in an irregular manner. The team discovered that tantalum-187's gamma-ray "fingerprint" was characteristic of a prolate (American football) shape but simultaneously with a hint of an oblate (pancake) shape.

The team believe their results hint at the possibility of tantalum's more dramatic shape-change to a full oblate rotation which they aim to explore in detail in future experiments.

Philip Walker, Emeritus Professor of Physics at the University of Surrey, said: "Theory suggests that just two more neutrons could tip the shape of tantalum-187 from prolate to oblate, so tantalum-189 is an objective for future investigation. However, it now seems to be a real possibility to go further and reach uncharted tantalum-199, with 126 neutrons, to test the exploding-star mechanism."

Yoshikazu Hirayama, Associate Professor of WNSC in KEK, said: "Our KISS is a unique facility which can provide unexplored heavy nuclei, such as tantalum-187, 189, and 199, for the studies of exotic nuclear structures. We have started to delve into the mechanism of the synthesis of elements in the universe through the nuclear studies at KISS."

University of Surrey

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to