Rapid test can ID unknown causes of infections throughout the body

November 10, 2020

UC San Francisco scientists have developed a single clinical laboratory test capable of zeroing in on the microbial miscreant afflicting patients hospitalized with serious infections in as little as six hours -- irrespective of what body fluid is sampled, the type or species of infectious agent, or whether physicians start out with any clue as to what the culprit may be.

The test will be a lifesaver, speeding appropriate drug treatment for the seriously ill, and should transform the way infectious diseases are diagnosed, said the authors of the study, published November 9, 2020 in Nature Medicine.

"The advance here is that we can detect any infection from any body fluid, without special handling or processing for each distinct body fluid," said study corresponding author Charles Chiu, MD, PhD, a professor in the UCSF Department of Laboratory Medicine and director of the UCSF-Abbott Viral Diagnostics and Discovery Center. "It's a simple procedure."

Conventional diagnostic tests are designed to detect only one or sometimes a small panel of potential pathogens. In contrast, the new protocol employs powerful "next-generation" DNA-sequencing technology to account for all DNA in a sample, which may be from any species -- human, bacterial, viral, parasitic, or fungal. Clinicians do not need to have a suspect in mind. To identify a match, the new test relies on specially developed analytical software to compare DNA sequences in the sample to massive genomic databases covering all known pathogens.

Chiu and colleagues at the UCSF Center for Next-Gen Precision Diagnostics first developed this method to identify infectious agents in spinal fluid in cases of encephalitis and meningitis, notably helping to save a long-sick boy's life, and later validating the protocol for use as a clinical test that is now being ordered by physicians at hospitals nationwide.

Chiu and collaborators also developed a similar blood test for sepsis, a leading killer of hospital patients, while other tests use respiratory fluid to diagnose infectious causes of pneumonia.

But each of these tests is designed to work only with specific body fluids, not all. Unfortunately, physicians are often uncertain of the origin of a patient's infection and must send off samples of several different body fluids simultaneously for lab analysis.

In the new study, the UCSF researchers, including Center for Next-Gen Precision Diagnostics co-founders Joe DeRisi, PhD, and Steve Miller, MD, PhD, compared performance of their new single-protocol "metagenomic" DNA test to gold-standard laboratory culture-based tests and now-standard PCR-based DNA tests, using two high-powered DNA sequencing technologies to diagnose bacterial or fungal infection. One was a portable, pocket-sized sequencer made by Oxford Nanopore Technologies, which can complete sequencing within six hours and to date has been used almost exclusively by research labs. The other was Illumina sequencing, which can simultaneously handle many samples in parallel and which already is used in some clinical labs (including at UCSF), but which requires more than 24 hours to complete.

The researchers analyzed body fluids -- 180 samples from in and around the lungs, the peritoneal cavity, pus-filled abscesses, the spinal cord, joints, and other sites such as tonsillar fluid and even vitreal (eye) fluid-- from 160 patients, 144 of whom were hospitalized.

Compared with gold-standard culture and PCR, the researchers diagnosed 79% of bacterial and 91% of fungal infections by Illumina sequencing, and 75% of bacterial and 91% of fungal infections by nanopore sequencing.

Using the metagenomic DNA test, Chiu and colleagues were also able to diagnose infections in seven of 12 patients whose illnesses had remained undiagnosed after standard culturing or PCR-based DNA testing.

"We think this one metagenomic test can potentially replace all PCR-based DNA tests now being used to detect hundreds of organisms that can't be adequately cultured," Chiu said.

The researchers are now moving towards FDA regulatory approval in hopes of making this test a standard part of clinical practice at UCSF and elsewhere.

University of California - San Francisco

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.