Rice has many fathers but only two mothers

November 10, 2020

Researchers investigating the heritage of thousands of rice varieties have identified just two distinct maternal lineages, a discovery which could help address the issue of global food security.

University of Queensland scientists studied more than 3000 rice genotypes and found diversity was inherited through two maternal genomes identified in all rice varieties.

Lead researcher UQ's Professor Robert Henry said the finding was important in understanding how rice adapted to its environment.

"We think there were two separate domestications of virgin wild plants that diverged around a million years ago in the wild, and then in the last 7000 thousand years human domestication of rice has occurred," Professor Henry said.

The two domesticated varieties interbred with the local wild rices throughout Asia.

"The wild rice has pollinated the domesticated rices planted nearby and the seed of the domesticated variety has then incorporated the genetics of the local wild varieties," he said.

"The maternal lineage is preserved via the seed, and we've identified that because rice farmers have and still continue to collect the seed from the field, the local varieties become very much like the local wild rices."

Professor Henry said the finding had implications for domestication of rice and breeding for adaptation to climate change to address food security.

"It gives us clues as to how we might try to capture more of the diversity in the wild and bring it into the domesticated gene pool to improve rice crops," he said.

"It also points to the need to understand the significance of the maternal genotype in terms of performance of rice because we did not previously understand there are two very distinct maternal functional types."

Rice is the staple food of more than half of the world's population and is the third-largest worldwide agricultural crop, with more than 630 million tonnes produced annually.

"Now we've got an ongoing collaboration with mathematicians to try and find a way of analysing the rice data in more detail, we want to look at relationships between lots of different subgroups," Professor Henry said.

"This would include examining how the Basmatis and the Japonicas really relate and the various types of Indica rices."
-end-
The research is published in BMC Plant Biology.

Media: Professor Robert Henry, robert.henry@uq.edu.au, +61 7 3443 0552; QAAFI Communications, Margaret Puls, m.puls@uq.edu.au, +61 (0) 419 578 356.

University of Queensland

Related Genetics Articles from Brightsurf:

Human genetics: A look in the mirror
Genome Biology and Evolution's latest virtual issue highlights recent research published in the journal within the field of human genetics.

The genetics of blood: A global perspective
To better understand the properties of blood cells, an international team led by UdeM's Guillaume Lettre has been examining variations in the DNA of 746,667 people worldwide.

Turning to genetics to treat little hearts
Researchers makes a breakthrough in understanding the mechanisms of a common congenital heart disease.

New drugs more likely to be approved if backed up by genetics
A new drug candidate is more likely to be approved for use if it targets a gene known to be linked to the disease; a finding that can help pharmaceutical companies to focus their drug development efforts.

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties

Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.

The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.

New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.

Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.

New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.

Read More: Genetics News and Genetics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.