Chemists Create A Molecular Antenna That Harvests Light

November 10, 1997

ANN ARBOR--Imagine your roof covered with a thin film of organic molecules busily converting sunlight into electricity. Visualize tiny molecular flashlights illuminating the DNA of living cells. Picture microscopic optical sensors that change color when exposed to trace amounts of chemicals.

Science fiction? Scientists at the University of Michigan and the University of Illinois at Urbana-Champaign don't think so. They have developed a new class of large dendrimer supermolecules which, they say, could one day be used for all these applications and more. "Normally, light energy disperses randomly throughout a molecule," said Raoul Kopelman, the U-M's Kasimir Fajans Professor of Chemistry, Physics and Applied Physics. "But these molecules have a specific tree-like structure which allows them to funnel light energy through the branches and direct it to a central point."

When photons of ultraviolet light hit a group of light-harvesting atoms on a branch of one of these supermolecules, the absorbed energy travels down the branch in the form of energy packets called excitons. Losing a small amount of energy at each branching point, excitons keep falling toward the center of the molecular tree until they finally drop, one at a time, into a molecular "trap," which is attached to the dendrimer's center. In the "nanostar"--the most optimally designed version of these dendrimers to be developed so far--photosensitive molecules in the trap convert exciton energy back into visible light with up to 99 percent efficiency.

"It works like a miniature quantum well in a semiconducting circuit," said Stephen F. Swallen, U-M postdoctoral fellow in chemistry. "The excitons don't have the extra energy to climb back up the molecule, so they just keep falling into the trap."

Synthesized from repeating molecular units called phenylacetylene monomers, which branch out from a central core, dendrimers are among the largest structurally controlled organic molecule ever created, according to Jeffrey S. Moore, professor of chemistry at the University of Illinois at Urbana-Champaign. The biggest molecule they have synthesized so far contains 127 chromophores or light-harvesting units.

Each dendrimer is custom-made by Moore and his colleagues to Kopelman's specifications to produce different chemical and physical properties for different applications. One of the most significant properties of the new molecules is their ability to resist photobleaching. "Anyone who has ever had a sweater fade or disintegrate after exposure to sunlight has experienced photobleaching," Kopelman said. "Molecules can only absorb and emit photons a limited number of times before they fall apart. Photobleaching is a particularly important factor for these dendrimers, because they interact with light very strongly."

Their specific chemical composition and physical structure make it possible for the dendrimers to resist photobleaching, according to Swallen. "While most organic molecules will decompose if multiple excitons are concentrated at the same spot, the nanostar can protect itself by diverting some excess energy away from the center back to the outer parts of the dendrimer," he explained. "Because the molecule is never hit with more energy than it can handle, it lasts much longer than ordinary molecules when exposed to light."

Research funding for the project is provided by the National Science Foundation and the Office of Naval Research. Collaborators included Michael R. Shortreed of Iowa State University, Zhong-You Shi of the University of Michigan; Weihong Tan of the University of Florida, Gainesville; Zhifu Xu of PPG Industries; and Chelladurai Devadoss and Pamidighantam Bharathi from the University of Illinois, Urbana-Champaign.
-end-


University of Michigan

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.