U-M Scientists Date Origin Of Moon In Earth's "Big Bang"

November 10, 1997

ANN ARBOR---University of Michigan geochemists have made the most accurate estimate yet of the age of our moon and discovered that it formed later in the development of the solar system than many scientists believed---almost certainly as the result of a collision between Earth and another planet at least as large as Mars.

The interplanetary "big bang" between the Earth and another object occurred about 50 million years after the start of the solar system, according to Alexander N. Halliday, U-M professor of geological sciences.

In a study published in the Nov. 7 issue of Science, U-M scientists Der-Chuen Lee and Halliday, with Gregory A. Snyder and Lawrence A. Taylor of the University of Tennessee, explain how they analyzed isotopes of tungsten in rock samples from the lunar surface to unlock the secrets of the moon's origin.

"Our data indicate the moon formed within the time window of 4.52 billion to 4.50 billion years ago. The tungsten isotopic composition of the moon is consistent with the hypothesis that the moon was derived from the Earth itself, or from a large object colliding with the Earth which had a similar chemical composition," Halliday said.

"Simulations of the giant impact indicate phenomenally high temperatures of more than 10,000 degrees K., which triggered planet-wide mixing and melting of the rocky material in the young planet Earth," said Der-Chuen Lee, a U-M postdoctoral research fellow in geological sciences. "The heat and energy associated with the moon's formation were also responsible for producing its magma oceans."

Scientists believe the planets in our solar system began forming about 4.57 billion years ago from a huge cloud of interstellar gas, dust and debris leftover from the birth of the sun. The Earth and other rocky planets in the inner solar system built up gradually over millions of years as their gravitational pull attracted larger and larger chunks of material from the cloud.

Halliday and Lee used a technique called multiple-collector, inductively-coupled plasma mass spectrometry to measure extremely small amounts of tungsten isotopes in 21 lunar samples. "Since hafnium-182 decays into tungsten-182 with a half-life of 9 million years, it is possible to determine relative ages of materials based on their isotopic ratios," Halliday said.

The research project was funded by the U.S. Department of Energy, NASA, the National Science Foundation and the University of Michigan. Gregory A. Snyder and Lawrence A. Taylor of the University of Tennessee's Planetary Geosciences Institute were research collaborators and co-authors on the paper.

# # # # # #

University of Michigan

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.