Neural mechanism reveals why dyslexic brain has trouble distinguishing speech from noise

November 11, 2009

New research reveals that children with developmental dyslexia have a deficit in a brain mechanism involved in the perception of speech in a noisy environment. The study, published by Cell Press in the November 12 issue of the journal Neuron, provides the first direct evidence that the human auditory brainstem exhibits remarkable moment-to-moment plasticity and undergoes a fine tuning that is strongly associated with noise exclusion.

Most people have little trouble carrying on a conversation with a friend in a noisy restaurant thanks to the highly adaptive auditory system which manages to focus in on the predictable, repeating pitch of the friend's voice and effectively tune out the random, fluctuating background noise. Although it may be a routine occurrence, exactly how the nervous system manages to accomplish this feat is still a mystery.

"Understanding the relationship between the adaptive auditory system and perception of speech in noise is clinically relevant because recent studies have demonstrated that the 5%% of school-age children who are diagnosed with developmental dyslexia can be particularly vulnerable to the deleterious effects of background noise," explains senior study author Dr. Nina Kraus, who directs the Auditory Neuroscience Laboratory at Northwestern University.

Dr. Kraus and colleagues measured auditory brainstem responses to a speech syllable presented in a repetitive or variable context in children with and without developmental dyslexia. The brainstem is the first part of the brain that processes auditory information and relays that information to higher brain centers. Children without dyslexia showed enhanced brainstem representation of features related to voice pitch in the repetitive context, relative to the variable context. In contrast, brainstem encoding in the children with dyslexia did not adapt well to the repeating auditory signal.

The researchers went on to show that the extent of context-dependent encoding in the auditory brainstem was positively correlated with the successful perception of speech in noise. "The ability to sharpen representation of repeating elements is crucial to speech perception in noise, since it allows superior tagging of voice pitch, an important cue for segregating sound streams in background noise," offers Dr. Kraus. "The disruption of this mechanism contributes to a critical deficit in noise exclusion, a common symptom in developmental dyslexia."

Interestingly, Dr. Kraus's team also observed that, when compared with the children that did not have dyslexia, the dyslexic children exhibited enhanced brain activity during the variable condition. "This may enable dyslexic children to represent their sensory environment in a broader and arguably more creative manner, although at the cost of the ability to exclude irrelevant signals," speculates Dr. Kraus.
The researchers include Bharath Chandrasekaran, Jane Hornickel, Erika Skoe, Trent Nicol, and Nina Kraus, of Northwestern University, Evanston, IL.

Cell Press

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to