Aileron collaborates study in Nature: Stapled peptides inhibit Notch1 transcription factor

November 11, 2009

CAMBRIDGE, MA - November 11, 2009 - Aileron Therapeutics, a biopharmaceutical company leading the development of a new class of drugs called Stapled Peptides, announced today that its collaborators, James E. Bradner, MD of the Dana-Farber Cancer Institute and the Broad Institute of Harvard and MIT, and Gregory L. Verdine, PhD, Professor of Chemistry at Harvard University, published research in Nature entitled, "Direct Inhibition of the Notch Transcription Factor Complex." Results presented in the paper showed that Stapled Peptides can potently and directly inhibit the transcription factor Notch, an oncogene implicated in cancer cell proliferation and survival. This research validates the potential for Stapled Peptides to modulate key intracellular biological targets, such as transcription factors, that have not been addressable with current small molecule or biologic drug modalities. There are estimated to be more than 1,500 transcription factors in the human genome, regulating key biological processes important in diseases such as arthritis, asthma, diabetes, infectious diseases, and cancer .

In their research published in Nature, Drs. Bradner and Verdine showed in multiple models, including T-cell acute lymphoblastic leukemia (T-ALL), that Stapled Peptides achieved tight direct binding to the Notch transcription factor complex, preventing the assembly of a functional transcription complex by the Notch1 oncogene. Further in vivo data show that direct and specific antagonism of the Notch multi-protein complex in the nucleus of cancer cells suppressed the transcription of many growth stimulating proteins such as Myc, thereby leading to cancer cell death. Potent, specific pathway inhibition was determined using genome-wide transcriptional signatures, first in vitro and later validated as biomarker studies in vivo. The direct inhibition achieved did not result in gastrointestinal toxicity, suggesting a viable therapeutic window for Stapled Peptides, without the limitations previously observed with upstream inhibitors of Notch.

"Transcription factors are among the most desirable and validated therapeutic targets in cancer, yet they are among the most elusive targets in cancer drug discovery," said James Bradner, MD,, Division Of Hematologic Neoplasia, Dana-Farber Cancer Institute. "Our research shows, for the first time, how assembly of the Notch multi-protein transcription factor complex can be inhibited in the nucleus of a cancer cell with a stapled peptide, leading to cancer cell death. Using stapled peptides to target transcription factors opens a potential new path for discovering novel and effective therapies for patients."

A growing body of research describes the critical role that transcription factors play in biological pathways implicated in a broad array of human diseases. In the past 25 years, for example, the 20 most-cited transcription factors have been referenced in the scientific literature an estimated 100,000 timesi. In cancer biology, it has been shown that more than 50% of T-cell acute lymphoblastic leukemias (T-ALL) have activating mutations in Notch . However, the vast majority of transcription factors lack an appropriate binding pocket for targeting by small molecules. Moreover, most transcription factors reside within cells and so are not suitable for antibody-based therapies. Stapled Peptides have now been shown to inhibit a previously-undruggable transcription factor at a therapeutically meaningful level.

"These results are tantamount to a declaration of open season on transcription factors," said Gregory L. Verdine, PhD, Erving Professor of Chemistry, Harvard University and co-chair of Aileron Therapeutics' scientific advisory board. "While the vast majority of transcription factors are not druggable with current small molecule or biologic modalities, many features of the protein-protein interaction represented by Notch are similar to other transcription factor assemblies, giving us good reason to expect that this technology will be useful for other currently undruggable targets across diseases such as cancer, inflammation, obesity, and infection."

"The publication of a second major research article in Nature within a year demonstrates the momentum and potential for development of Stapled Peptides as a new drug modality," said Joseph Yanchik, III, Chief Executive Officer of Aileron Therapeutics. "Stapled Peptides designed to target important biologic but previously undruggable transcription factors, such as Notch, is a major focus of Aileron's R&D effort and is of significant interest as one of our potential early clinical development programs."

In a study published in Nature in October 2008 titled "BAX Activation is Initiated at a Novel Interaction Site," Aileron Therapeutics collaborators at the Dana Farber Cancer Institute demonstrated that a Stapled Peptide was able to uniquely target a new and fundamental activation mechanism of the programmed cell death or "apoptotic" pathway.

Aileron has developed Stapled Peptides designed to target specific transcription factors across multiple therapeutic areas, and is advancing these compounds in its preclinical programs.
-end-
Online copies of the article can be obtained at http://www.nature.com/.

About Stapled Peptides

AILERON's Stapled Peptides are synthetically locked, or 'stapled', into an alpha-helical shape with an optimized cross-linking chemistry to mimic the structure found at the interface of many protein-protein interactions. To achieve this, Aileron has deployed a comprehensive cross-linking tool-kit to install single staples, multiple staples and contiguous staples to achieve desired efficacy and pharmacokinetic profiles. The resulting Stapled Peptide drugs are endowed with unique properties, including efficient cell penetration, high affinity binding to large target protein surfaces, and excellent stability and pharmacokinetic properties within the body.

About Aileron Therapeutics Aileron Therapeutics is a biopharmaceutical company leading the development of a completely new therapeutic modality and class of drugs called Stapled Peptides, and with deep and broad knowledge and experience around this new technology. Stapled Peptide drugs represent the first solution for modulating intracellular protein-protein interactions, which have been identified as critical control points for most human diseases. As such, Stapled Peptide drugs offer a unique opportunity to exploit potentially thousands of currently "undruggable" targets across all human diseases. Aileron is building a robust pipeline of therapeutics for the treatment of cancer, infectious disease, metabolic disease and immune/inflammatory diseases. Aileron Therapeutics was founded in 2005 and is based in Cambridge, Massachusetts. For additional information, please visit http://www.aileronrx.com.

Media Contact:
Kathryn Morris
Yates Public Relations
845-635-9828

The Yates Network

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.