Signal found to enhance survival of new brain cells

November 11, 2013

A specialized type of brain cell that tamps down stem cell activity ironically, perhaps, encourages the survival of the stem cells' progeny, Johns Hopkins researchers report. Understanding how these new brain cells "decide" whether to live or die and how to behave is of special interest because changes in their activity are linked to neurodegenerative diseases such as Alzheimer's, mental illness and aging.

"We've identified a critical mechanism for keeping newborn neurons, or new brain cells, alive," says Hongjun Song, Ph.D., professor of neurology and director of Johns Hopkins Medicine's Institute for Cell Engineering's Stem Cell Program. "Not only can this help us understand the underlying causes of some diseases, it may also be a step toward overcoming barriers to therapeutic cell transplantation."

Working with a group led by Guo-li Ming, M.D., Ph.D., a professor of neurology in the Institute for Cell Engineering, and other collaborators, Song's research team first reported last year that brain cells known as parvalbumin-expressing interneurons instruct nearby stem cells not to divide by releasing a chemical signal called GABA.

In their new study, as reported Nov. 10 online in Nature Neuroscience, Song and Ming wanted to find out how GABA from surrounding neurons affects the newborn neurons that stem cells produce. Many of these newborn neurons naturally die soon after their "birth," Song says; if they do survive, the new cells migrate to a permanent home in the brain and forge connections called synapses with other cells.

To learn whether GABA is a factor in the newborn neurons' survival and behavior, the research team tagged newborn neurons from mouse brains with a fluorescent protein, then watched their response to GABA. "We didn't expect these immature neurons to form synapses, so we were surprised to see that they had built synapses from surrounding interneurons and that GABA was getting to them that way," Song says. In the earlier study, the team had found that GABA was getting to the synapse-less stem cells by a less direct route, drifting across the spaces between cells.

To confirm the finding, the team engineered the interneurons to be either stimulated or suppressed by light. When stimulated, the cells would indeed activate nearby newborn neurons, the researchers found. They next tried the light-stimulation trick in live mice, and found that when the specialized interneurons were stimulated and gave off more GABA, the mice's newborn neurons survived in greater numbers than otherwise. This was in contrast to the response of the stem cells, which go dormant when they detect GABA.

"This appears to be a very efficient system for tuning the brain's response to its environment," says Song. "When you have a high level of brain activity, you need more newborn neurons, and when you don't have high activity, you don't need newborn neurons, but you need to prepare yourself by keeping the stem cells active. It's all regulated by the same signal."

Song notes that parvalbumin-expressing interneurons have been found by others to behave abnormally in neurodegenerative diseases such as Alzheimer's and mental illnesses such as schizophrenia. "Now we want to see what the role of these interneurons is in the newborn neurons' next steps: migrating to the right place and integrating into the existing circuitry," he says. "That may be the key to their role in disease." The team is also interested in investigating whether the GABA mechanism can be used to help keep transplanted cells alive without affecting other brain processes as a side effect.
-end-
Link to the article: http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3572.html

Other authors on the study were Juan Song, Jiaqi Sun, Zhexing Wen, Gerald J. Sun, Derek Hsu, Chun Zhong, Heydar Davoudi and Kimberly M. Christian of Johns Hopkins, and Jonathan Moss and Nicolas Toni of the University of Lausanne in Switzerland.

The study was funded by the National Institute of Neurological Disorders and Stroke (grant numbers NS047344 and NS048271), the National Institute of Environmental Health Sciences (grant number ES021957), the National Institute of Child Health and Human Development (grant number HD069184), the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the Brain and Behavior Research Foundation, the Maryland Stem Cell Research Fund, the Swiss National Science Foundation (grant number PP00A-119026/1) and the Fondation Leenaards.

Related stories:

Brain's Stem Cells 'Eavesdrop' to Find Out When to Act http://www.hopkinsmedicine.org/news/media/releases/brains_stem_cells_eavesdrop_to_find_out_when_to_act

On Using Stem Cells in the Brain to Study Mental Disorders http://www.hopkinsmedicine.org/institute_cell_engineering/_includes/videos/Transcriptions/Song_txn.html

Hopkins Researchers Uncover Key to Antidepressant Response http://www.hopkinsmedicine.org/news/media/releases/hopkins_researchers_uncover_key_to_antidepressant_response

Johns Hopkins Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.