Bacteria may allow animals to send quick, voluminous messages

November 11, 2013

EAST LANSING, Mich. -- Twitter clips human thoughts to a mere 140 characters. Animals' scent posts may be equally as short, relatively speaking, yet they convey an encyclopedia of information about the animals that left them.

In the current issue of the Proceedings of the National Academy of Sciences, a Michigan State University researcher shows that the detailed scent posts of hyenas are, in part, products of symbiotic bacteria, microbes that have a mutually beneficial relationship with their hosts.

"When hyenas leave paste deposits on grass, the sour-smelling signals relay reams of information for other animals to read," said Kevin Theis, the paper's lead author and MSU postdoctoral researcher. "Hyenas can leave a quick, detailed message and go. It's like a bulletin board of who's around and how they're doing."

Interestingly, it's the bacteria in pastes - more diverse than scientists had imagined - that appear to be doing the yeoman's job of sending these messages.

"Scent posts are bulletin boards, pastes are business cards, and bacteria are the ink, shaped into letters and words that provide information about the paster to the boards' visitors," Theis said. "Without the ink, there is potentially just a board of blank uninformative cards."

Theis, who co-authored the study with Kay Holekamp, MSU zoologist, studied multiple groups of male and female spotted hyenas and striped hyenas in Kenya.

By using molecular surveys, they were afforded unprecedented views of the diversity of microbes inhabiting mammals' scent glands. The researchers were able to show that the diversity of odor-producing bacteria in spotted hyena scent glands is much greater than historical studies of mammals had suggested.

The diversity, however, still consistently varies between hyena species, and with sex and reproductive state among spotted hyenas, Theis added. Importantly, the variation in scent gland bacterial communities was strongly correlated with variation in the glands' odor profiles, suggesting that bacteria were responsible for the variation in scent.

"There have been around 15 prior studies pursuing this line of research," Theis said. "But they typically relied on culture-based methods, an approach in which many of the similarities and differences in bacterial communities can be lost. If we used those traditional methods, many of the key findings that are driving our research wouldn't be detected at all."

For the current paper, Theis' team was the first to combine microbial surveys and complementary odor data from wild animals. The studies' findings leave Theis anxious to return to the field.

"Now I just need to get back into the field to test new predictions generated by this study," Theis said. "The next phase of this research will be to manipulate the bacterial communities in hyenas' scent glands to test if their odors change in predictable ways."

Theis is now also conducting similar research in birds, in collaboration with MSU researcher Danielle Whittaker. Being able to cast a wide research net and connect quickly with collaborators are some of the benefits of working for MSU's BEACON Center for the Study of Evolution in Action, Theis added.
-end-
Theis' research is supported in part by the National Science Foundation. Theis and Holekamp are participants in the NSF-funded MSU BEACON Center.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.