The oceans' sensitive skin

November 11, 2014

Like a skin, the sea-surface microlayer separates the ocean from the atmosphere. The exchange of gases and the emission of sea-spray aerosols - two functions that are crucial for climate - take place in this boundary film. A mesocosm experiment by scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven (AWI) and the Institute for Baltic Sea Research Warnemünde (IOW) reveals for the first time how ocean change might affect the special physical, chemical and biological characteristics of the ocean's uppermost boundary. The results are published in the "Journal of Geophysical Research: Oceans". First author is Dr. Luisa Galgani who conducted the study as part of her PhD at GEOMAR and AWI.

"Experiments have shown how ocean acidification, a change in the ocean chemistry due to the uptake of man-made carbon dioxide, influences the growth and efficiency of marine bacteria as well as the sinking of carbon-rich particles", Dr. Luisa Galgani resumes. "We know that organic material and microorganisms accumulating in the sea-surface microlayer are similar to those found in the water column below. So we expected that ocean acidification-driven changes in ocean biogeochemistry in the water column can also be reflected in the microlayer. It is important to understand changes in this microenvironment, because it might have consequences for air-sea interactions that are relevant for our climate."

To investigate consequences of ocean acidification on marine systems, future ocean scenarios have been simulated with the KOSMOS mesocosms (KOSMOS: Kiel Off-Shore Mesocosms for future Ocean Simulations) at Raunefjord, Norway. These nine large floating structures, each of which isolates 75.000 litres of seawater, were brought to different carbon dioxide (CO2) levels as to be expected for upcoming decades and centuries. For one month, the surface of six mesocosms was sampled daily with a glass plate.

Analyses of the samples verified that organic compounds in the sea-surface microlayer reflected the temporal development of phytoplankton growth in the water column. Also, at higher CO2 levels, the concentrations of bacterioneuston, marine bacteria inhabiting the surface, increased. More acidic conditions promoted changes in the dynamics of organic matter. Especially proteinaceous marine gels became smaller but more abundant probably because they served as a nutritional substrate in the sea-surface microlayer, where higher abundances of microorganisms were more efficient in degrading the organic material accumulated during a phytoplankton bloom.

"From previous studies we know that the activity of marine bacteria is stimulated at high CO2", Dr. Galgani explains. "Based on our observations in the sea-surface microlayer, we think that this could be very important as it may imply a positive feedback on atmospheric CO2 from oceanic sources, that is, from microbial metabolism at the air-sea interface."

Additionally, stimulated bacterial degradation might heavily affect the organic composition of nascent sea-spray particles, upon which relies the ability of marine aerosols to interact with the climate system. In the era of climate change, the contribution of marine aerosols is still poorly understood. "There is a long way ahead before we can determine how the ocean provides raw material for clouds formation", Prof. Dr. Anja Engel, head of the research group Microbial Biogeochemistry at GEOMAR, states. "However, we think that our study provided an additional piece of the puzzle and we are directing our research in investigating more the structure and the dynamics of the air-sea interface to better estimate ocean-atmosphere interactions in a high CO2 world."
The work was supported by the projects SOPRAN (Surface Ocean Processes in the Anthropocene) and BIOACID (Biological impacts of Ocean Acidification), both funded by the Bundesminsterium für Bildung und Forschung (BMBF) and is a contribution to the international SOLAS project (Surface Ocean - Lower Atmosphere Study).

Original publication:

Galgani, L., Stolle. C., Endres, S., Schulz, K. G., Engel, A. (2014), Effects of ocean acidification on the biogenic composition of the seasurface microlayer: Results from a mesocosm study, J. Geophys. Res. Oceans, 119, doi:10.1002/2014JC010188.


GEOMAR Helmholtz Centre for Ocean Research Kiel
BIOACID (Biological Impacts of Ocean Acidification)
SOPRAN (Surface Ocean Processes in the Anthropocene)
SOLAS (Surface Ocean - Lower Atmosphere Study)
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven
Leibniz Institute for Baltic Sea Research Warnemünde


Images are available for download at Video footage on request

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to